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ABSTRACT 

DIFFERENTIAL EQUATIONS WITH GENERAL BOUNDARY COMDIT 
-- - - 

Eugene Keiser, Ph.D. 

Universi ty  of P i t t sburgh ,  1970 

The ob jec t  of t h i s  d i s s e r t a t i o n  i s  t o  e s t a b l i s h  s u f f i c i e n t  

condi t ions t o  ensure the  ex is tence ,  uniqueness, s t a b i l i t y  and asymptotic 

s t a b i l i t y  of the  s o l u t i o n  t o  t h e  following ini t ia l -boundary value problem 

-I- A(x,D)u(x,t) = f ( u )  au(x, t )  
a t  xsR , t20 

with genera l  boundary condi t ions 

B.(x,D)u(x,t)  = 0 
J 

and i n i t i a l  condi t ion 

U(X90) = uo(x) 

where A(x,D) is  a s t rong ly  e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  opera tor  i n  QcR", 

n 2 1, and {B 1 m-1 s a t i s f i e s  very genera l  boundary condi t ions which inc lude  
j j =o  

the  D i r i c h l e t  boundary condi t ions as a subclass ,  and f is, i n  genera l ,  a 

nonl inear  func t ion  defined on the  appropr ia te  func t ion  space. By s e t t i n g  

u ( t )  = u(4 $ t )  t he  above equation wi th  the  boundary condi t ions and i n i t i a l  

condi t ion are reduced t o  an a b s t r a c t  (nonlinear) opera tor  d i f f e r e n t i a l  

equation 

CtLO) 
du t a+ Au(t) = f(u) d t  

u(0) = u 
0 

e A is an (unbounded) l i n e a r  operator  wi th  domain and range both 

contained i n  the  same real Hi lbe r t  space and f is a nonl inear  func t ion  

mapping a11 of It i n t o  He With t h e  proper d e f i n i t i o n  of t h e  base H i l b e r t  

space, H, A becomes an extension of t h e  opera tor  A ( x , D ) .  With a d d i t i o n a l  



v i i  

assumptisns on A and the  nonl inear  func t ion  f ( u )  t he  ex is tence ,  unique- 

ness ,  s t a b i l i t y  o r  asymptotic s t a b i l i t y  of t h e  ini t ia l -boundary va lue  

problem is ensured from t h e  r e s u l t s  obtained f o r  the  a b s t r a c t  opera tor  

equation. 

The i n v e s t i g a t i a n  of s t a b i l i t y c r i t e r i a  i s  extended to  the s tudy of 

the  following fni t ia l -boundary value problem 

with genera l  boundary condi t ions e 

equat ion is  reduced t o  a system of 

where 

U "  p] , 

au(x,t) + A(x,D)u(x,t) = f (u) a t  

3 U  By s e t t i n g  u 

equat ions sf t h e  form 

= u,u2 = - this  1 a t  

By a s u i t a b l e  choice of €unction space,  we ob ta in  tlie a b s t r a c t  opera tor  

equat ion of tlie form 

where A is  an a b s t r a c t  l i n e a r  opera tor  extension of A(x ,D)  mapping some 

func t ion  space i n t o  i t s e l f .  With c e r t a i n  r e s t r i c t i o n s  on t h e  system 

(A(x,lI)${B I $ ) ,  and on the  nonl inear  func t ion  f ( u ) ,  s t a b i l i t y  cri teria is  
j 

es t ab l i shed  f o r  t h e  genera l  boundary value p lem from t h e  r e s u l t s  obtained 

f o r  the  a b s t r a c t  opera t iona l  d i f f e r e n t i a l  equation, 

f ( u )  

cases  "1 2 and n = l are considered sepa ra t e ly ,  since the  boundary 

The l i n e a r  problem, 

0, and t h e  nonl inear  problem are considered f o r  QcRnS where the 
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conditions d i f fer  for the two cases. Applications are given which show 

how the  theory can b e  applied to a large c lass  of physical and engineering 

problems 
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1 0 INTRODUCTION 

A,M. Lyapunov i n  1193" developed h i s  so-called "second method" oL 

"d i r ec t  method" which years  la ter  w a s  used i n  answering the  quest ion of 

s t a b i l i t y  of d i f f e r e n t i a l  equations from the  given form of t h e  equat ions 

together  with t h e  boundary condi t ions without e x p l i c i t  knowledge of t h e  

so lu t ions ,  I n  t h e  s tudy of ordinary d i f f e r e n t i a l  equations,  t h e  main idea  

of Lyapunov's d i r e c t  method is  the  cons t ruc t ion  of a "Lyapunov func t iona l , "  

v(u) wi th  u i n  some f i n i t e  dimensional space and having the  p rope r t i e s  t h a t  

v(u) is p o s i t i v e  and the  de r iva t ive  of ~4%) along so lu t ions  of t h e  given 

equation is  negative.  Since many phys ica l  problems must be descr ibed by 

par t ia l  d i f f e r e n t i a l  equat ions i t  was n a t u r a l  t o  extend Lyapunov's d i r e c t  

method t o  s tudy the  case f o r  pa r t i a l  d i f f e r e n t i a l  equations by the  con- 

s t r u c t i o n  of a Lyapunov func t iona l  i n  i n f i n i t e  

t he  use of funct ion spaces on which a topology w a s  defined. 

considered equat ions of  t he  form 

imensional spaces, and by 

Zubov i n  [36] 

u x t )  au 
a t :  a<, = f ( x , u , s )  

au 
and e s t ab l i shed  a s t a b i l i t y  theory f o r  the  s p e c i a l  case of f l i n e a r  i n  

In  more recent  years  a growing number of r e s u l t s  have been discovered as 

can be seen i n  a survey of the  l i t e r a t u r e  by Wang [ 3 4 ] .  However, each one 

was only concerned wi th  s p e c i f i c  p a r t i a l  d i f f e r e n t i a l  opera tors  and con- 

s idered  only s m a l l  c l a s ses  of problems. M r igorous  mathematical approach 

covering a l a r g e  class of systems w a s  used and o f t e n  the  ex is tence  of t he  

so lu t ion  w a s  assumed. There were some authors  who s tudied  the  s t a b i l i t y  

problem 20r ope ra t iona l  d i f f e r e n t i a l  equat ions,  f o r  example, Taam i n  [311 

* 
Numbers i n  bracke ts  designa references a t  t he  end of t h i s  d i s s e r t a t i o n ,  
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s tud ied  t h e  s t a b i l i t y  p rope r t i e s  of t h e  equation 

duo f Au(t) = f ( t p u , x )  d t  

where A w a s  e i t h e r  a bounded l i n e a r  operator  o r  t h e  i n f i n i t e s i m a l  generator  

of a semi-group and s 

asymptotic s t a b i l i t y  of a per iodic  so lu t ion .  

f i c i e n t  conditions were given f o r  t h e  ex is tence  and 

1.1. Recent Resul ts  f o r  t h e  D i r i c h l e t  Problem 

One of t he  problems of extending t h e  Lyapunov s t a b i l i t y  theory from 

ordinary d i f f e r e n t i a l  equations t o  p a r t i a l  d i f f e r e n t i a l  equations is  t h a t  

t h e  ex is tence  of t h e  s o l u t i o n  must f i r s t  be e s t ab l i shed ,  s ince  t h e  deriva- 

t ive of t h e  Lyapunov func t iona l  i s  taken along so lu t ions  of t h e  given 

equation. Buis i n  171 w a s  the  f i r s t  t o  r igorous ly  use the  r e s u l t s  f o r  oper- 

a t i o n a l  d i f f e r e n t i a l  equations t o  so lve  the  s t a b i l i t y  problem f o r  a l a r g e  

class of i n i t i a l  - boundary value problems by considering a l i n e a r  p a r t i a l  

d i f f e r e n t i a l  equation 

&?k& f A(x,D)u(x,t) = 0 a t  

with Di r i ch le t  boundary conditions and a given i n i t i a l  func t ion ,  where 

A(x,D) is  a l i n e a r  p a r t i a l  d i f f e r e n t i a l  operator  and u (x , t )  is i n  some 

prescr ibed func t ion  space. 

follows with t h e  a b s t r a c t  equation 

operator  d i ~ ~ e ~ e n ~ i a ~  equation is formed as 

duo 4- Au(t) d t  

t) is a vec tor  valued func t ion  with va lues  i n  t h e  real flbart space 
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H and A is a linear unbounded opera tor  with domain and range i n  H, and A 

can b e  considered as the extension of t h e  p a r t i a l  d i f f e r e n t i a l  opera tor  

A ( x , D )  i n  (1-1) i n  the  sense t h a t  f o r  any u i n  the  domain of A, Au is  the  

func t ion  def ined by 

where t h e  domain, D(A), and base  Hi lbe r t  space, H, are complete funct ion 

spaces and the  domain of A is  charac te r ized  by the  D i r i c h l e t  boundary con- 

d i t i ons .  This shows t h a t  t he  opera tor  equation (1-2) can be considered as 

an a b s t r a c t  extension of ( l - l ) *  The s t a b i l i t y  problem of (1-2) is then 

s tudied.  By using semi-group theoryp the  s o l u t i o n  of (1-2) can be repre- 

sen ted  by a semi-group i n  t h e  sense t h a t  i f  a s o l u t i o n  of (1-2) with i n i t i a l  

of u ED(A) is denoted by u( t ;uo , to) ,  then under s u i t a b l e  value a t  t 

condi t ions the  opera tor  A is the  i n f i n i t e s i m a l  genera tor  of a semi-group 

{Ttl  t 2 0) of bounded linear opera tors  such t h a t  the s o l u t i o n  of (1-2) 

e x i s t s  and is given by 

= to 0 

Thus, t he  s t a b i l i t y  p rope r t i e s  of the s o l u t i o n  of (1-2) are r e l a t e d  t o  t h e  

p rope r t i e s  of t he  semi-group generated by A, 

condi t ions f o r  A t o  generate  a semi-group (of class Co) s o  t h a t  a s o l u t i o n  

Buis e s t ab l i shed  s u f f i c i e n t  

of (1-2) exis t s  and is s t ab le .  Then from the  semi-group p rope r t i e s  and the  

d e f i n i t i o n  of D ( A ) ,  t h i s  gave s u f f i c i e n t  condi t ions  f o r  the  s o l u t i o n s  of 

(1-1) t o  ex i s t ,  s a t i s f y  the  i n i t i  l condi t ion,  v e r i f y  the  D i r i c h l e t  boundary 

condi t ions and a180 b e  t o t i c a l l y  ~ t ~ b l @  or  s t a b l e .  Bulls developed h i s  

s t a b i l i t y  cr i ter ia  f o r  the  oper t o r  equation s o l v  ng only the  class of linear 

p a r t i a l  d i f f e r e n t i a l  equat ions s a t i s f y i n g  the D i r i c h l e t  boundary condi t ions.  
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Pa0 i n  1231 examined the  non-linear opera t iona l  d i f f e r e n t i a l  equation 

o r  evolut ion equation 

9 Au(t) = 0 d t  

where A, is  i n  general  an unbounded, non-linear operator  with .domain and 

range both contained i n  the  same real (or complex) Hi lber t  space H. I n  

[23], necessary and s u f f i c i e n t  conditions were given so t h a t  A would gener- 

a te  a non-linear semi-group {T ItLO> of bounded opera tors  i n  a Hi lber t  space 

which ensures the  ex is tence  and uniqueness of t h e  so lu t ion  of (1-3)$ while 

the  proper t ies  of t he  semi-group e s t a b l i s h  the  s t a b i l i t y  of t h e  so lu t ion  t o  

( l -3)* As a subclass  of the evolut ion equat ion (1-3) Pao i n  [23] a l s o  

considered the  operator  equation of t h e  form: 

t 

i- A u ( t )  = f (u) d t  (1-4) 

i n  which A is  a l i n e a r ,  unbounded opera tor  with domain and range both con- 

ta ined  in a seal Hi lbe r t  space H, and f i s  a non-linear func t ion  from €I 

i n t o  H. A has the  property of being the  i n f i n i t e s i m a l  generator  of a l i n e a r  

semi-group of bounded operators  i n  a Hi lbe r t  space and condi t ions were given 

on f t o  ensure t h e  exis tence,  uniqueness, asymptotic s t a b i l i t y  o r  s t a b i l i t y  

of the s o l u t i o n  of (1-4)- Pao only appl ied these  r e s u l t s  t o  the  r e l a t i v e l y  

small class of p a r t i a l  d i f f e r e n t i a l  equations which s a t i s f y  Di r i ch le t  bound- 

ary condi t ions,  s ince  i t  can be re laced  t o  t h e  evolut ion equation (1-3) or  

(1-4) r ead i ly ,  

A, its domain D(A), and the  base Hi lber t  space H so i t  ould s a t i s f y  t h e  

conditions imposed by Pa0 i n  [23] and a so relate the  equation (1-4) t o  the  

non-linear p a r t  

Because of t h e  d f f i c u l t y  of def ining t h e  a b s t r a c t  operator  

tion (1-5) with  genera l  boundary con- 

ork has not  been done t o  so lve  the  more general  boundary va lue  problem 
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1.2. Recent Developments i n  General Boundary Value Problems 

I n  s tudying t h e  s t a b i l i t y  problem f o r  more genera l  ini t ia l -boundary 

value problems f o r  p a r t i a l  d i f f e r e n t i a l  equat ions one needs t to  ensure the  

ex i s t ence  and uniqueness as w e l l  as t h e  s t a b i l i t y  of t h e  so lu t ion .  Schechter 

i n  1281 and [ 2 9 ] ,  Lions and Magenes [18] considered t h e  p a r t i a l  d i f f e r e n t i a l  

equation with more genera l  boundary condi t ions i n  which they were i n t e r e s t e d  

i n  e s t ab l i sh ing  c r i t e r i a  f o r  t he  ex is tence  of t h e  s o l u t i o n  t o  the  general  

boundary value problem. 

by placing c e r t a i n  r e s t r i c t i o n s  on t h e  system (A(x,D) , ISj)  ,521 t o  ensure 

the  ex is tence  and uniqueness of t h e  s o l u t i o n  t o  the  e l l i p t i c  p a r t i a l  d i f f e r -  

e n t i a l  equat ion 

Necessary and s u f f i c i e n t  condi t ions were e s t ab l i shed  

A(x,D)u = f 

Bj(x,D)u = 0 

i n  52 (1-6) 

on 852 (OLJlm-1) 

where A(x,D)  is an e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  opera tor ,  B (x,D) are 

m - linear p a r t i a l  d i f f e r e n t i a l  opera tors ,  and 52 is  a subse t  of the  

Euclidean n - space Rn, n 

are placed on { B  (xBD)Ijmo m-' 

t he  'complementary condition: t o  a s su re  t h a t  t he  boundary va lue  problem is 

well-posed. 

condi t ions as a subclass ,  

j 

2,  with boundary, 852. Certain r e s t r i c t i o n s  

t h a t  of being a 'normal set' and s a t i s f y i n g  
j 

It should be noted t h a t  t hese  condi t ions  inc lude  the  D i r i c h l e t  

Also A(x,D)  i o  a 'properly e l l i p t i c 9  p a r t i a l  

d i f f e r e n t i a l  opera tor ,  and $2 is s u f f i c i e n t  y smooth. With 

on IA(x,D),{B )&?) t h e  s o l u t i o n  to  (1-6) $8 found t o  exist 

s 4  u, i n  (1-6) a e i t a  some p resc r  
j 

t hese  condi t ions  

and be unique. 

space satisfying 
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c e r t a i n  d i f f e r e n t i a b i l i t y  condi t ions i n  Q and near  t h e  boundary. 

Douglis and Nirenberg [2],  Agmon [l], Browder 161 and Friedman [ll] s tud ied  

the  problem of d i f f e r e n t i a b i l i t y  af the  s o l u t i o n  t o  the  genera l  boundary- 

value problem (1-6) i n  $2 and near t h e  boundary, an. The func t ion  space i n  

which the  so lu t ions  are found are complete Hi lbe r t  spaces and are charac- 

t e r i z e d  by t h e  boundary conditions given. 

i z a t i o n  is found I n  Grebb 1121 and Friedman [ll], I n  solving the  general  

boundary value problem ( l -6)$ these  authors d id  not  consider t h e  s t a b i l i t y  

problem 

Agmon, 

A discussion of t h i s  character-  

1.3. Area f o r  Extension 

I n  [23], u t i l i z i n g  t h e  theory developed f o r  operator  d i f f e r e n t i a l  

equat ions,  s u f f i c i e n t  conditions were given Lo ensure the  ex is tence ,  unique- 

ness,  asymptotic s t a b i l i t y  and s t a b i l i t y  f o r  t h e  s o l u t i o n  of t h e  nonl ine 

p a r t i a l  d i f f e r e n t i a l  equation 

au(x t 
a t  - + A(x,D)u(x,t) = f ( u )  (1-7) 

with D i r i c h l e t  boundary condi t ions,  where f ( u )  

equation, 

(1-7) with more general  boundary condi t ions,  f o r  ins tance ,  t h e  mixed problem, 

i t  is necessary t o  consider t he  s t a b i l i t y  problem f o r  t he  p a r t i a l  d i f f e r -  

e n t i a l  equat ion (1-7) with genera l  boundary conditions.  

physical  problems are i n  the  form 

0 gives  us t h e  l i n e a r  

Since many phys ica l  and engineering problems are i n  the  form of 

Also since many 

+ A(x,D)u(x,t) = f ( u )  (1-8) a + 

with genera l  boundary condi t ions,  such as t h e  wave equation and the  bending 
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p l a t e  problem, t h i s  s t a b i l i t y  problem must also be considered. 

t o  study the s t a b i l i t y  problem one must ensure the  ex is tence  and uniqueness 

of t he  so lu t ion  as w e l l  as t h e  s t a b i l i t y  of t h e  so lu t ion .  The work done i n  

1231 on operator  d i f f e r e n t i a l  equations and the  work i n  1181, [28], and [29] 

on the  ex is tence  and uniqueness of so lu t ions  t o  more general  boundary va lue  

problems, allows us t o  consider the  s t a b i l i t y  problem for a l a r g e  c l a s s  of 

p a r t i a l  d i f f e r e n t i a l  equat ions,  i.e. (1-7) and (1-8), with genera l  boundary 

In  order  

conditions.  
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2,o. STATEMENT OF THE PROBLEM 

Many phys ica l  o r  engineering problems can be placed i n  t h e  fo l loh 'ng  

form 

au(x9t)  + A(x,D)u(x,t) = f (u) a t  X E  n, e.-0 (2-1) 

o r  i n  t h e  form 

n 

f a au(x,t) f A(x,D)u(x,t) = f (u)  X E  n, t20  (2-2) 2 a t  a t  

where u (x , t )  is a func t ion  def ined on S2 x [ O s ~ ) ,  and where Q is a bounded 

domain i n  the  n - dimensional Euclidean space Rnp and A(x ,D)  is  a l i n e a r  

formal p a r t i a l  d i f f e r e n t i a l  operator  whose c o e f f i c i e n t s  are i n f i n i t e l y  

d i f f e r e n t i a b l e  func t ions  defined on S2 and are t i m e  independent. 

i n  genera l ,  a non-linear funct ion defined on a func t ion  space, such t h a t  

i f  f (u )  3 0 then (2-1) and (2-2) are l i n e a r  and i f  f (u )  # 0 w e  have a none 

l i n e a r ,  o r  semi-linear,  p a r t i a l  d i f f e r e n t i a l  equation. To spec i fy  t h e  

so lu t ion  of (2-1) o r  (2-2) a system of boundary condi t ions is given by 

f(u) i s ,  

where t h e  B . ( x , D )  are m - l i n e a r  p a r t i a l  d i f f e r e n t i a l  opera tors  defined on 

the  boundary, 852, and are independent of t i m e .  The c o e f f i c i e n t s  are i n f i -  
J 

n i t e l y  d i f f e r e n t i a b l e  funct ions defined on 352. Also, an i n i t i a l  condition 

is given by 

here u (x) is a given space dependent f u  c t i o n e  Since A(x ,D)  is a l i n e a r  
0 

d i f f @ r e n t ~ a l  operator  thew (2-1) and (2-3) or (2-2) and (2-3) can be reduced 
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t o  the  following form 

duo -I- Au(t) = f ( u )  
d t  (2-5) 

where u ( t )  is  a vector  valued funct ion defined on [0,-) bo a s u i t a b l e  

Hi lbe r t  space H ,  and A, i n  genera l ,  is an unbounded l i n e a r  opera tor  whose 

domain and range are both contained i n  H,  and f is  a non-linear operator  

defined on H i n t o  H. I n  the case (2-2) and (2-3), the  Hi lbe r t  space H is  

a product of H i lbe r t  spaces,  H = H 

valued funct ion,  A a 2 x 2 mat r ix  whose elements are l i n e a r  p a r t i a l  d i f f e r -  

e n t i a l  opera tors  and f ( u )  a 2 - dimensional vec tor  i n  H1 x H2. 

t he  operator  equation (2-5) can be considered as an a b s t r a c t  extension of 

t he  ini t ia l -boundary va lue  problem (2-1) and (2-3),  o r  (2-2) and (2-3), 

examples of which are the  hea t  equation and t h e  wave equation wi th  mixed 

boundary conditions.  The objec t  of t h i s  i nves t iga t ion  is t o  e s t a b l i s h  

s u f f i c i e n t  condi t ions on the  system (A.(x,D),{B ) , a )  t o  ensure t h e  ex is tence ,  

uniqueness and asymptotic s t a b i l i t y  o r  s t a b i l i t y  of the  so lu t ion  of (2-1)$ 

(2-3) , and (2-4) o r  of (2-2), (2-3) and (2-4) e This is done by def ining the  

appropriate  a b s t r a c t  operator  i n  a base Hi lbe r t  space,  H, and def in ing  t h e  

cor rec t  domain, D(A) character ized by t h e  boundary condi t ions (2-3) and 

forming t h e  cor rec t  a b s t r a c t  ope on. U t i l i z i n g  the  s t a b i l i t y  

criteria i n  [231 which so lve  t h e  s t a b i l i t y  problem f o r  (2-51, t h e  behavior 

of the corresponding p a r t i a l  d i f f e r e n t i a l  equations can be deduced, Sect ions 

x H2$ wi th  u ( t )  a 2 - dimensional vec tor  1 

I n  a l l  cases, 

j 

ntroduce t h e  types of p a r t i a l  d i f f e r e n t i a l  equations t o  be 

s tud ied  and sec t ion  2,3 summarizes the resu ned in t h i s  i nves t iga t ion ,  
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Pao i n  [23] considered the  a b s t r a c t  operator  equation of t he  form 

duo + Au(t) = f ( u )  
d t  

where u ( t )  is a vector-valued func t ion  i n  a Hi lbe r t  space H, A is  an 

unbounded l i n e a r  opera tor  mapping p a r t  of H i n t o  H, and f is a 

funct ion on H i n t o  H e  Su f f i c i en t  condi t ions w e r e  es tab l i shed  t o  ensure the  

exis tence,  uniqueness and s t a b i l i t y  of a s o l u t i o n  of (2-6). These r e s u l t s  

were appl ied t o  the  Di r i ch le t  boundary value problem i n  which (2-6) i s  an 

a b s t r a c t  extension of t h e  p a r t i a l  d i f f e r e n t i a l  equat ion (2-1) w i t h  D i r i c h l e t  

boundary condi t ions,  where (2-6) is formed by def in ing  the  appropr ia te  domain, 

D(A), character ized by t h e  Di r i ch le t  boundary condi t ions,  and t h e  appropr ia te  

base Hi lbe r t  space,  He The solving of t he  s t a b i l i t y  problem f o r  (2-6) 

guarantees the  ex is tence  and uniqueness of t he  s o l u t i o n  of (2-1) which, 

s a t i s f i e s  t he  Di r i ch le t  boundary conditions.  Furthermore, t h e  s t a b i l i t y  of 

the  so lu t ion  is guaranteed. Since f o r  boundary condi t ions more genera l  than 

the  Di r i ch le t  problem t h e  d e f i n i t i o n  of t he  exact  domain af t h e  operator ,  

the  base Hi lber t  space and the  a b s t r a  t operator  equation which s a t i s f i e  

the  conditions found i n  1231 and which would relate the  a b s t r a c t  operator  

equation t o  t h e  general  boundary va lue  problem becomes much more d i f f i c u l t ,  

more genera l  boundary value problems have not  been discussed, 

To overcome t h i s  problem c e r t a i n  r e s t r i c t i o n s  must be placed on the  

p a r t i a l  d i f f e r e n t i a l  operator  A(x,D), t he  boundary opera tors  B (x,D) and Q, 

With these  r e s t r i c t i o n s  placed on the system (A(x,D),{B ].,61), as discussed 

i n  Schechter [28] and [29], t h e  propeg a b s t r a c t  opera tor9  exact  domain, base 

j 

j 

Hilber t  space and a b s t r a c t  operator  equation are defined so  t h a t  the  exist- 
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with genera l  boundary condi t ions and from t h e  proper d e f i n i t i o n  of t h e  

domain of A and t h e  p rope r t i e s  of t he  s o l u t i o n  of (2-6), t he  ex is tence ,  

uniqueness and s t a b i l i t y  of t h e  genera l  boundary va lue  problem is  ensured. 

I n  t h i s  i nves t iga t ion  t h e  f i r s t  case s tud ied  is the  l i n e a r  p a r t i a l  

d i f f e r e n t i a l  equation of t h e  form 

aulx,t> + A(x,D)u(x,t) = 0 a t  

wi th  genera l  boundary condi t ions 

B (x:D)u(x:t) = 0 
j 

and i n i t i a l  condi t ion 

where A(x,D) is  a l i n e a r  formal p a r t i a l  d i f f e r e n t i a l  opera tor ,  u ( x , t )  is  a 

funct ion def ined on the  subse t  52 of the  Euclidean n - space R 1 
are m - linear partial  d i f f e r e n t i a l  opera tors  def ined on the  boundary, aS2, 

and are independent of time. 

case n i 2  d i f f e r  from t h e  boundary condi t ions f o r  t h e  case n = 1, the  two 

cases are s tud ied  separa te ly .  

equation (2-6) with the  co r rec t  base Hi lbe r t  space,  a b s t r a c t  operator  and 

domain, D(A), and u t i l i z i n g  t h e  r e s u l t s  i n  [23] a s t a b i l i t y  theory i s  developed 

i n  which t h e  ex is tence ,  uniqueness as w e l l  as the  s t a b i l i t y  of t h e  s o l u t i o n  

t o  the  genera l  boundary value problem given i n  (2-7) is ensured. The cases  

n - > 2 and n = 1 are solved i n  a siinilar manner. 

n and B (x,D) 

Since the  genera l  boundary condi t ions f o r  t h e  

B e  def in ing  t h e  appropr ia te  a b s t r a c t  opera tor  

The next  s t e p  is t o  consider t he  nonl inear  problem 

atro i- A(x,D)u(x,t) = f ( u )  a t  x €a, t i 0  



where A(x,D), t h e  genera l  boundary condi t ions,  and i n i t i a l  func t ion  are 

defined as i n  t h e  l i n e a r  case,  and f (u )  is a nonl inear  func t ion  def ined on 

the  appropr ia te  func t ion  space. By u t i l i z i n g  t h e  r e s u l t s  f o r  t h e  l i n e a r  case 

the  ex is tence ,  uniqueness and s t a b i l i t y  of t h e  s o l u t i o n  t o  (2-8) is ensured 

by a d d i t i o n a l  assumptions on f (u ) .  A s  i n  t h e  l i n e a r  problem, the  cases n - > 2 

and n = 1 are t r e a t e d  separa te ly .  

s tud ied  by Buis  [7] i s  j u s t  a s p e c i a l  case of t he  theory developed f o r  t he  

general  boundary value problem s i n c e  the  r e s t r i c t i o n s  imposed on B (x,D) 

include t h e  D i r i c h l e t  condi t ions as a subclass .  

genera l  boundary value problems bf (2-7) and (2-8) are considered which shows 

how the  s t a b i l i t y  theory can be  appl ied  t p  phys ica l  problems. 

It is then shown t h a t  t he  D i r i c h l e t  problem 

j 
Some app l i ca t ions  of t he  

2.2, The P a r t i a l  D i f f e r e n t i a l  Equation: 

The next problem s tud ied  i s  the  l inear  p a r t i a l  d i f f e r e n t i a l  equat ion 

+ a &&&. 3- A(x,D)u(x,t) = 0 2 a t  
(2 -9)  

a t  

with - 0, and with genera l  boundary condi t ions 

where A(x,D) i s  a f i n e a r  forma p a r t i a l  d i f f e r e n t  f operator ,  Here a, 
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m-1 
j j =o t h e  funct ion u (x , t ) ,  t he  l i n e a r  boundary opera tors  { B  (x,D)) are 

defined as i n  t h e  cases (2-7) and (2-8). By def in ing  t h e  appropriate  base 

Hi lber t  space as a product space, H x H2, and a b s t r a c t  operator  A, a 2 x 2 

matr ix  with l i n e a r  p a r t i a l  d i f f e r e n t i a l  operator  elements, with t h e  co r rec t  

domain, D ( A ) ,  an operator  equation is formed and a s t a b i l i t y  c r i t e r i o n  is 

deduced which ensures t h e  exis tence,  uniqueness and s t a b i l i t y  of t he  so lu t ion  

t o  (2 -9 ) -  

1 

The next case considered i s  t h e  nonl inear  genera l  boundary value 

problem of the  following form 

W + a  &!&& a t  + A(x,D)u(x,t) f(U) XEQ, t20  (2-10) 2 a t  

wi th  general  boundary condi t ions,  A(x,D), B (x,D) and the  i n i t i a l  va lue  

funct ion are def ined as i n  the  l i n e a r  case and f ( u )  i s  a nonl inear  func t ion  

defined on a func t ion  space. 

add i t iona l  condi t ions on f (u )  and t h e  exis tence,  uniqueness and s t a b i l i t y  

of the so lu t ion  of (2-10) is guaranteed, The Di r i ch le t  problem f o r  an 

equation of the form (2-10) as worked out  by Pa0 1241 is shown t o  be a 

s p e c i a l  case of t he  problem (2-10) with genera l  boundary conditions.  

examples are worked out  t o  show how the  theory can be appl ied t o  var ious 

physical  problems, 

3 

S t a b i l i t y  r e s u l t s  can be found by imposing 

Spec i f i c  

2,3 ,  Summary of Results and Contributions t o  the  Problem 

The objec t  of t h i s  s tudy is to e s t a b l i s h  a st i l i t y  theory so t h a t  

i t h  genera l  bounda ven p a r t i a l  d i f f e r e n t i a  

conditions not: o 

s t a b l e ,  The con ibu t ion  of t h i s  d i s s e  t a t i o n  is  the  establishment o f  c 

y e x i s t s  and is  unique but is a l s o  asymptotically s t a b l e  or  
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f o r  the exis tence,  uniqueness and s t a b i l  t y  of t h e  so lu t ions to  

of p a r t i a l  d i f f e r e n t i a l  equations wi th  general  boundary condi t ions and a 

given i n i t i a l  value funct ion,  

s tages  i n  Chapters 6 and 7, and the  r e s u l t s  i n  these  chapters  are summarized 

as follows: 

This cont r ibu t ion  can be s t a t e d  i n  two sepa ra t e  

( i )  I n  Chapter 6 ,  t h e  objec t  is  t o  f i n d  s u f f i c i e n t  condi t ions on t h e  

system (A(x,D),{B.),R) t o  ensure the  exis tence,  uniqueness, asymptotic 

s t a b i l i t y  and s t a b i l i t y  of t h e  so lu t ion  t o  the  i n i t i a l - g e n e r a l  boundary va lue  

problem f o r  t he  nonl inear  p a r t i a l  d i f f e r e n t i a l  equation 

J 

where f ( u )  f 0 gives  t h e  l i n e a r  equation. F i r s t ,  f o r  t h e  l i n e a r  case, 

s u f f i c i e n t  condi t ions are found t o  guarantee the  existence and uniqueness 

of the so lu t ion  as w e l l  as t h e  s t a b i l i t y  of t h e  so lu t ion .  These r e s u l t s  are 

given i n  theorems 6.2.1 and 6.3.1. 

f o r  the  nonl inear  case which extend 

add i t iona l  condi t ions on the  nonl inear  funct ion f ( u )  and gu 

ence, uniqueness and s t a b i l i t y  of t he  so lu t ion  t o  t h e  nonl inear  problem. 

r e s u l t s  are given i n  theorems 6.41;2 and 6,42,1, 

main idea  is  t o  show t h a t  i f  t h  

t o  Di r i ch le t  boundary ondi t ions ,  then the e i s t ence ,  uniqueness and s t a b i l i t y  

Secondly, s t a b i l i t y  criteria are es t ab l i shed  

he r e s u l t s  of the  l i n e a r  case by placing 

an tees  t h e  ex i s t -  

These 

I n  s e c t i o n  6.5$ the  

general  boundary condi t ions a e r e s t r i c t e d  

l u t i o n  is ensured i f  A(x, l ) )  s a t i s f i e s  an  i n t e g r a l  inequa 

shows t h a t  the  DP i c h l e t  problem a l  case of t h e  theo 

Chapter 6 ,  These r e s u l t s  e found i n  theorems 6,S. l  d 6.5,2, F ina l ly ,  
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s p e c i f i c  

b ounda ry 

examples 

examples are considered which show t h a t  a l a r g e  c l a s s  of i n i t i a l -  

value problems f i t s  i n t o  t h e  theory developed i n  Chapter 6, These 

are seen t o  s a t i s f y  t h e  condi t ions placed on (A(x,D),{B )9R)e 5 

( i i )  

on the  system 

s t a b i l i t y  and 

problem, 

,l 

I n  Chapter 7,  t h e  main ob jec t  is  t o  f ind  s u f f i c i e n t  condi t ions 

(A(x,D),{B ),R) t o  ensure the  ex is tence ,  uniqueness, asymptotic 

s t a t i l i t y  of t he  s o l u t i o n  t o  the  following ini t ia l -boundary va lue  
j 

i- A(x,D)u(x, t )  = f (u) 
au (x , t )  

2 a t  a t  

where f ( u )  E 0 gives  t h e  l i n e a r  case. F i r s t  the  l i n e a r  problem is  considered 

and by forming the  co r rec t  base Hi lber t  space, a product space,  and an a b s t r a c t  

opera tor  A, a 2 x 2 matr ix  with l i n e a r  opera tor  elements and an a b s t r a c t  

opera tor  equation, s u f f i c i e n t  condi t ions are found on t h e  system (A(x,D),{B I p Q )  

t o  ensure the  ex is tence ,  uniqueness and s t a b i l i t y  of t he  s o l u t i o n  t o  the  l i n e a r  

equation, This r e s u l t  is found i n  theorem 7 @ l e l a  Secondly, t h e  nonl inear  

problem is  considered and s t a b i l i t y  criteria are formed by p lac ing  

assumptions on the  nonl inear  func t ion  f ( u ) .  

In  s e c t i o n  7.31, 

considered and shown t o  be a s p e c i a l  case of t h e  theory worked out  i n  Chapter 7, 

Examples are Considered t o  show t h a t  the  theory developed i n  Chapter 7 can 

be appl ied t o  a l a rge  c l a s s  of physfcal  problems. These are found i n  examples 

7,32,1 and 7.32,2, 

j 

This r e s u l t  is i n  theorem 7.2.1. 

a D i r i c h l e t  problem f o r  a p a r t i a l  d i f f e r e n t i a l  equat ion is 
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3,0, FUNCTIONAL, ALULYSIS' 

Fundamental t o  the  s tudy of t he  s t a b i l i t y  theory f o r  Pa r t i a l  Dif, !r- 

e n t i a 1  Equations i s  a knowledge of Functional Analysis. I n  t h i s  chapter  w e  

w i l l  g ive  a b r i e f  discussion on the  b a s i c  d e f i n i t i o n s  and p rope r t i e s  needed 

i n  the  remainder of t h i s  work. There are many re ferences  which w i l l  g ive  a 

more complete d iscuss ion  of t he  sub jec t ,  among these  are i n  183, [91, [ l o ]  

and [35]. 

3.1. Normed Spaces 

A set  X i s  a l i n e a r  space over a f i e l d  K i f  f o r  any two elements 

x,ycX, t h e  sum x + y is defined as an element of X, and s i m i l a r l y  f o r  any 

AEK, the  scalar product Ax is def ined and is an element of X. The opera t ions  

s a t i s f y  the  following condi t ions:  f o r  any x , y ~ X ,  and any A,pcK 

( i )  (x + y) + 2 = x + (y + 2); 
( i i )  x + y = y + x; 

( i i i )  t he re  exists an element 0 i n  X such t h a t  f o r  any XEX, O O X  = 0; 

(iv) (A + v )  x = Ax + px; 
(v) x (x + y) = Ax + xy; 

( v i )  ( A P )  x = A(vx); 

(Vii)  lax  = x. 

L e t  X be a l i n e a r  space over t h e  f i e l d  of 

x ~ , x ~ , . . ~ , x  

r e l a t i o n  is s a t i s f i e d  

of X are s a i d  t o  be l i n e a r l y  n 

real or complex numbers. The elements 

independent when the  following 

= o  



are l i n e a r l y  dependent. 

A l i n e a r  space X i s  c a l l e d  a normed l i n c z r  space i f  every eler:!ent -EX 

has assoc ia ted  wi t11  i t  a r ea l  niimber, denoted I I x I 1 ,  call.ed t h e  norm of x ,  

’ sa t i s fy ing  the follo:.~i.ng c o i d i t i o n s :  f o r  any x,y~X, and any XEK, 

(i) 1 1  )E 1 1  20, 1 1  x 1 1  = 0 i f  and only i f  x = 0; 

The normed linear space 5.s then denoted by (X, I 1 0  I I ) o r  simply by X. 

sequmce (x,) i n  a normed l i n e a r  spacc X i s  sn5.d t o  be a Cauchy sequence i f  

for any E > 0, t h e r e  e x i s t s  an in teger ,  N(E),  such t h a t  f o r  any n,m - > N(E),  

I ~f every Cauctiy sequence i n  x converges t o  an e ~ c i i ~ n t :  XEX, 

then X i s  c a l l e d  a complete normed l i n e a r  space o r  a Banach space. 

A 
4 

- x,I I < E. 

This  

convergence i s  s t r o n g  convergence and d.11 b e  denoted by n- I.@ x 11 = x, o r  marc 

simply by 

X i s  a r ea l  o r  coriiplcx Banach spacc depending on whether K i s  a real ox complex 

f i e l d .  

e x i s t s  an PI - > 0 such that f o r  any el-emcnt of t h e  se t ,  we have I 1 x I I 5 Me 

A set {XI i n  8 normed l i n e a r  space X i s  s a i d  t o  be bounded i f  t h e r e  

A complex l i n e a r  space X i s  c a l l e d  a complex i n n e r  product space (or 

a pre-Hilbert  space) i f  t h e r e  i s  defined on X x X a complex valued func t ion ,  

denoted by (x,y) ,  c a l l e d  t h e  i n n e r  product of x and y, s a t i s f y i n g  t h e  follosr- 

i n 8  p r o p e r t i e s :  f o r  any x ,y ,z  E X and any X , ~ E K  

( 6 )  ( A  x 4- py,z)  = x (x, z )  -E 11 (y ,z)  ; - 
(j j.) ( ~ , > l )  (y ,?I) ; (1.11~ h;\r d c ~ ~ ~ t c : . ;  the  cC,i1!pl.cx c c ~ : ~ j ~ ~ ~ ; ~ ~  tc:) 
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( i i i )  

A real l i n e a r  space is ca l l ed  a real inner  product space i f  t he  p rope r t i e s  

( i )  ( i i ) :  ( i i i )  are s a t i s f i e d ,  where (ii) ' rep laces  (ii) above 

(x,x) 2 0 and (x,x) = 0 i f  and only i f  x = 0 

( i i ) )  (XBY) = (Y,X). 

An inner  product space becomes a normed l i n e a r  space by def ining I/. x 1 1  = 

( x , ~ ) ~ ' ~  and the  norm is  s a i d  t o  be induced by the  inner  product ( @  * )  

normed l i n e a r  space i s  not  an inner  product space. 

l i n e a r  space X (complex o r  r e a l )  

l a w :  f o r  any x,ysX 

Every 

However$ i n  a normed 

i f  t h e  norm I 1 e I I s a t i s f i e s  t h e  parallelogram 

2 I I  x +  Y l 1 2  + I I  x - Y I I  = 2 ( I 1  x 1 1 2  + I l Y l I 2 )  

than an inne r  product can be def ined so t h a t  X i s  an inne r  product space., 

I f  an inner  product space H (complex o r  real) is complete with respec t  t o  t 

norm induced by t h e  inner  product (.,.), i t  is  c a l l e d  a Hflber t  space and denoted 

by (H, (. , )) o r  more simply by H. 

ing t o  whether K is  real 

two important proper t ies ;  

H is  a rea% o r  complex Hi lbe r t  space accord- 

F complex. A H i lbe r t  space s a t i s f i e s  t h e  following 

(i) The inner  product is sesqu i l inea r  i f  H is a complex Hi lbe r t  space 

and i s  b i l i n e a r  if H is a real Hi lbe r t  space. 

for any x , y 3 z ~ H ,  and any a1sa2,B1p82eK 

By s e s q u i l i n e a r i t y  we  mean: 

I f  ? and B2 are replaced by $$ and $2 

is s a i d  t o  be b i  

e s p @ c ~ ~ ~ e l y  then the  i n n e r  p 1 

w t h e  sense th C 8  
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x + x ,  and yn ; y a s n + a  n 11 

hen we have 

P L e t  us consider t h e  example L (Q), (1 p a m ) .  The set of a l l  r e a l -  

valued (or complex-valued) measurable func t ions  f (x) defined a. e ,  (almost 

everywhere) on R ,  where Q is an open subse t  of R 

Lebesque i n t e g r a b l e  over R c o n s t i t u t e s  a normed l i n e a r  space LP(52). 

n such t h a t  If (x)lp is  

It i s  

a l i n e a r  space from the  d e f i n i t i o n  of sum and scalar product:  

X€K, 

L e t  f,gcLP(R), 

and the norm i s  def ined by 

Lp(ll) is a Banach space who! 

f ( X ) ~ ~ C ~ X ] ” ~  (dx =. dxle .dxn) e 

e elements are eqi iva lenck  classes of pth pover 

i n t e g r a b l e  func t ions ,  where two func t ions  f and g are s a i d  t o  be equiva len t  

if f ( x )  = g(x) a.ee  on R .  2 I n  p a r t i c u l a r ,  i f  p = 2 ,  L (R)  is a H i l b e r t  space 

wi th  t h e  i n n e r  product and norm denoted by 

, 
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on 3.1.2. I f  HI = (Hs(e9e)l)  and H2 = (H,(.,.)2) are two 

inner  product spaces then t h e  inner products are equivalent  if t h e  noms they 

induce are equivalent  noms. 

L e t  X be a normed l i n e a r  space. An element XEX is s a i d  t o  be a l i m i t  

po in t  of a set DCX i f  t he re  e x i s t s  a sequence of d i s t i n c t  elements {x ) 6 D  

such t h a t  
n 

The c losure  of a set D i n  X, denoted by 5, is the  set comprising D and a l l  

of the l i m i t  po in ts  of D i n  X. 

i s  dense i n  X i f  5 = X. 

is a complete normed l i n e a r  space, and w e  w i l l  say 5 is the  completion of D 

with respect  t o  the  norm on X, 

- 
A set D is  s a i d  t o  be closed i f  D = D and 

I f  X is  complete then the c losure  of a set D i n  X 

3.2. Linear and Nonlinear Operators 

L e t  X and Y be l i n e a r  spaces over t h e  same f i e l d  of scalars K. L e t  

A be an operator  (or funct ion)  which maps p a r t  of X i n t o  Y, The domain of A ,  

denoted by D(A), i s  t h e  set of a l l  XEX such t h a t  t h e r e  ex i s t s  a yeY where 

Ax = ye  The range of A,  denoted by R(A), is t h e  se t  (Ax~xcD(A)). The n u l l  

space (or Kernel) of A ,  Ker(A) = {XEXIAX = 0 ) .  A2 is ca l l ed  an extension of 

I f  D(A1) = D(A2) and D(A2) and A1x = A2xS f o r  a l l  x ED(A ) 

A1x = A2xP f o r  a l l  xtzD(Al), then A1 = A2" 

then A i s  s a i d  t o  have an inverse  and i s  denoted by A-' and defined by D(A-l) = 

I f  t he  operator  A is  one-to-one, 

R(A) and 

A-'(y) = x where y&U(A-l) and 
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An operator  A with domains D(A) 

i n  Y is  ca l l ed  l i n e a r  i f  f o r  any x,y&D(k) and any C ~ ~ B E K  

a l i n e a r  subspace of X, and ranges R(A), 

and i s  c a l l e d  nonl inear  i f  i t  is not  l i n e a r ,  

I f  X and Y are normed l i n e a r  spaces and T I s  a near operator  w i  

D(T)erX and R(T)CY, t h e  following s ta tements  are equivalent :  

(i) T is continuous on D(T) ; 

( i i )  T is  bounded on D(T), i.e., t he re  e x i s t s  a real number M > 0, 

such t h a t  f o r  any x E D(T) 

I f  T is bouhdad, t h e  norm of T i s  defined by 

With t h i s  norm, the  space of a l l  bounded linear opera tors  with domain X and 

range i n  Y ,  denoted by L ( X I Y ) )  is a normed 1 near  space! if w e  def ine  add i  

of opera tors  and scalar mul t ip l i ca  ion  i n  the  usua l  way, 

is a Banach space so is L ( X , Y ) .  

t he re  exists an m > 0, such t h a t  for any XED(T) I IT x 11, 

I f  i n  addi t ion  Y 
-1 T e x i s t s  a d  is continuous i f  and only 

ml I x 11,. 
L e t  X, Y be normed l i n e a r  sp ces on the  same scala 

product space X x Y is  a normed l i n e a r  space de f in  

p a i r s  {x,y3, such t h a t  xcXI YEP with addi t ion  and scalar mu1 

by 
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and with t h e  no 

I I {XPY) 

given by 

I f  X and Y are Banach spaces then so i s  X x Ye 

D ( T ) c X  and R(T)cY , t h e  graph of T ,  G (TI 

{ x , T x ) ,  such t h a t  xcD(T). 

X x Y. 

I f  T is a l i n e a r  operator  w 

is t h e  set of a l l  ordered p a i r s  

Since T is l i n e a r ,  G(T) is a l i n e a r  subspace of 

A l i n e a r  operator  T i s  s a i d  t o  be clorred i n  X i f  t he  graph, G(T), of 

T is  closed i n  X x Y. An equivalent  d e f i n i t i o n  is the  following: A l i n e a r  

operator  T is  closed i f  and only if xn&D(T), xn 2 x, Txn Y (as  n -b imply 

xeD(T) and Tx = ye  I f  T is closed then the  inverse ,  T"l, i f  i t  exists, is 

closed. A bounded l i n e a r  operator  need not be closed a n d ' a  closed operator  

need not  be bounded, However, w e  have the  following w e l l  known theoremsthe 

Banach Closed Graph Theorem, 

Theorem 3.2.1. A closed l i n e a r  operator  T defined on a Banach space 

X i n t o  a Banach space Y is continuous. 

A l i n e a r  operator  T is  s a i d  t o  be c losab le  i f  t he re  exists a linear 

extension of Twhich is closed i n  X. I f  T is c losable ,  t he re  is a closed 
- 

OK r with G(T) = 

closed extension of T ,  in t h e  sense t h a t  any closed extension o 

e x ~ ~ ~ s i o n  0% Te 

e T is  c a l l e d  t h e  c losure  of Tand  i e  t h e  smallest 

A l i n e a r  opera 

c e y is  
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S, denoted by S-k,  is  def ined as fol lows:  

D(S*) = {YEHI t he re  e x i s t s  a yJ%€I, such t h a t ,  f o r  any XED@), 

sx,y) = (x,y*)) 

* exists if and only i f  D(S) is  dense i n  H, and S* is  a c losed  l i n e a r  

operator .  S is symmetric i f  % S A ,  t h a t  i s ,  S+c is an ex tens ion  of S, and is 

s e l f - a d j o i n t  i f  S = S*- Hence, a s e l f - a d j o i n t  opera tor  i s  closed. 

Def in i t i on  3.2.2. L e t  X and Y be normed l i n e a r  spaces.  Suppose T 

is a l i n e a r  opera tor  w i th  domain i n  X and range i n  Y. 

continuous (or compact) if f o r  c v q y  bounded sequance Ix 1 i n  X, t he  sequence 

(Tx 1 conta ins  a subsequence converging t o  some l i m i t  i n  Ye 

T i s  conipletery 

n 

n 
Def in i t i on  3.2 ,3 .  L e t  H1 = ( € I a ( e , o ) l )  be a R i l b e r t  space,  and T a 

- 
l inear  ope ra to r  wi th  domain and range i n  HI. 

with  r e spec t  t o  t h e  i n n e r  product of H 

T is  s a i d  t o  be  d i s s i p a t i v e  

i f  f o r  every xeD(T) 1 

Re(Tx,x)l 5 0. : r  

T i s  s a i d  t o  be s t r i c t l y  d i s s i p a t i v e  with r e spec t  t o  the i nne r  product on H 

i f  there  e x i s t s  a 6 > 0, such t h a t  f o r  every xeD(T) 

The supremum of a l l  f3 sat-isfying the  i n e q u a l i t y  is c a l l e d  t h e  d i s s i p a t i v i t y  
4 

cons tan t  

conplcx 

on X t o  

,Y be  normed l i n e a r  spaces  on t h e  same scalar f i e l d  of real o r  

xiurnbcrs and l e t  L(X,E) be  t h e  c l a s s  of a l l  bounded limcar ope ra to r s  

Y, I f  Y is thc  real or  complcx nmbcr field topologized i n  the usual 
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Way, L(X,Y) i s  c a l l e d  the  conjugate space (or dual space) of X and i s  denoted 

by X*. An element of X* is c a l l e d  a funct ional .  

continuous l i n e a r  func t iona l s  on X. 

Thus X* is t h e  set of a131 

The pa i r ing  between any elements x of X 

I f  w e  def ine  the  norm of fEX* by and f of X* is denoted by f (x) o r  by <f , x > *  

l f l l ,  = sup l f (x ) l  f o r  I I x I < 1  X -  

then X* is a Banach space,  

I f  X is a Hi lbe r t  space,  X* can be  i d e n t i f i e d  with X as can be seen 

from the  Riesz r ep resen ta t ion  theorem (fhe i d e n t i f i c a t i o n  is wi th  H as an 

a b s t r a c t  s e t )  e 

Theorem 3.2.2. For any l i n e a r  func t iona l  f on a Hi lbe r t  space 

H = ( H , ( . # . ) ) ,  t h e r e  exists an element yf E H, uniquely determined by t h e  

func t iona l  f I, such t h a t  

f ( x )  = (X’Yf) f o r  every x E H, 

Corol lary 3.2.1, L e t  H be a Hi lbe r t  space, Then the  t o t a l i t y  of 

a l l  bounded l i n e a r  func t iona l s  H* on H c o n s t i t u t e s  a l s o  a Hi lbe r t  space, and 

the re  is a norm preserving,  one-to-one correspondence f +3 y between H* and H. f 

We have introduced the  concept of equivalent  i nne r  product which is 

use fu l  i n  t h e  development of t h e  s t a b i l i t y  theory i n  Chapter 4. 

ing  theorem which w a s  formulated by P, Lax and A. N. Milgram p lays  an import- 

a n t  r o l e  in the  cons t ruc t ion  of an equivalent  i nne r  prod c t e  A proof can be 

found i n  [35] a 

The follow- 

Theorem 3.2.3. (E ifgram). L e t  H be  a 
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be a complex-valued func t iona l  defined on the  product space H x H which 

s a t i s f i e s  t h e  conditions: 

( i )  Sesqu i l inea r i ty ,  i .e.,  

( i i )  Boundedness, i .e.,  t he re  e x i s t s  a p o s i t i v e  constant y such t 

( i i i )  P o s i t i v i t y ,  i.e., t he re  e x i s t s  a p o s i t i v e  constant 6 such t h a t  

Then the re  e x i s t s  a uniquely determined bounded l i n e a r  operator S with a 

bounded l inear .  inverse  S-l such t h a t  

Def in i t ion  3.2.4, A sequence ( x  1 i n  a normed l i n e a r  space X i s  

for every 

n 
s a i d  t o  converge weakly t o  an element XEX i f  @ f (xn) - f (x) 

fcX*. 

x is  uniquely determined. 

This is denoted by w - 9 .  = xe  It can be shown i n  t h i s  case t h a t  

It should be noted t h a t  i f  xn converges s t rong ly  

converges weakly t o  xe However, t h e  converse is not  t rue .  We 

know t h a t  i f  H is a I I i lber t  space, and t h e  sequence {x 1 of H converges weakly 

t o  xcII and A& IIxnlIH = 1 1  x 1 I H 9  then (x 1 converges str0r.gI.y t o  x. 

n 

n 
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We w i l l  now def ine  vec tor  valued func t ions ,  weak cont inui ty  and weak 

d i f f e r e n t i a b i l i t y  

Def in i t ion  3.2.5. 

u ( t )  is s a i d  t o  be weakly continuous i n  t i f  < f , u ( t ) >  is  continuous f o r  

L e t  u ( t )  be a vec tor  valued funct ion on [Os-) t o  

X. 

each fc:X*. u ( t )  is  s a i d  t o  be weakly d i f f e r e n t i a b l e  i n  t i f  < f , u ( t ) >  i s  

d i f f e r e n t i a b l e  f o r  each fsX*. I f  t h e  de r iva t ive  of < f , u ( t ) >  has  t h e  form 

< f , v ( t ) > ,  f o r  each fcX*s v ( t )  is  t h e  weak de r iva t ive  of u ( t )  and w e  w r i t e  

- =  du(t)  v ( t )  weakly. 
d t  

3.3.  Spec t r a l  Theory and Semi-Groups 

L e t  T be a l i n e a r  opera tor  with domain D(T) and range R(T) both 

contained i n  a normed l i n e a r  space X. The set of complex numbers X f o r  

which the  l i n e a r  opera tor  (XI-T) has an inverse  and tile p rope r t i e s  of t h i s  

inverse ,  i f  i t  e x i s t s ,  are c a l l e d  the  spectral theory f o r  t he  opera tor  T. 

Defin i t ion  3.3.1, The complex number A is  i n  the  reso lvent  se t ,  
0 

p ( T ) ,  of T i f  K(X I-T) is dense i n  X and h o 1 9  has a continuous illverse, 

(AOI-T)-'. The inverse  (A0I-T)-' is denoted by R(Ao;T) and is c a l l e d  the  

reso lvent  of T a t  X e 

numbers X no t  i n  p ( T ) .  

0 

The spectrum of T,a(T),  is the  set of a l l  complex 
0 

Theorem 3.3.1, L e t  X be a Banach space and T a closed l i n e a r  operator  

with D(T) and K(T) both i n  X, Then f o r  any X€p(T) ;  the  reso lvent  R(X;T) i s  

an everywhere defined continuous l i n e a r  operator .  The reso lvent  set, p (2.) of 

T i s  an open set of the  complex plane.  

This theorem tells us t h a t  €or any Xcp(T) ,  K(X1:T) = D( 

and the  spectrum, a(T) ,  of T is a closed set of t h e  complex plane.  

more d e t a i l e d  discussion of s p e c t r a l  theory see [141 and [351. 

For a 
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I n  t h e  study of s t a b i l i t y  theory f o r  opera t iona l  d i f f e r e n t i a l  

equations found i n  Pa0 [23], much use w a s  made of t he  Semi-group theory of 

Yosida and Hi l le -Phi l l ips  i n  [35] and [ l 4 ] ,  respect ively.  The b a s i c  d e f i n i t i o n s  

and p rope r t i e s  w i l l  be  defined here. 

de t a i l ed  duscussion. 

Look i n  t h e  above books f o r  a more 

Def in i t ion  3.3,2, For each t c  0 , ~ ) ~  l e t  Tt€L(X,X). The family 

{Ttl  t 2 O l e  L(X,X) is ca l l ed  a s t rongly  continuous semi-group of c l a s s  Co 

(or  a semi-group of class Co) i f  t h e  following condi t ions hold: 

( i i )  To = I (I is t h e  i d e n t i t y  opera tor ) ;  

( i i i )  ?.lp Ttx = T f o r  any t&O and any XEX. 
0 

I f  { T ~ J  t20)  is a semi-group, i t s  norm s a t i s f i e s :  

t he re  e x i s t s  an M > 1  - and a B<wP such t h a t  f o r  any tl_O 

I f  B can be taken t o  be zero,  then {Tt I t>O) is s a i d  t o  be an equibounded semi- 

group of class C * i f  i n  addi t ion  M = 1, i t  is  c a l l e d  a cont rac t ion  semi-group 

of class Coe I f  B can be taken as B a 0, {TtltZO) is a negat ive semi-group 

of class Co and if, i n  addi t ion ,  M * 1, i t  is  c a l l e d  a negat ive cont rac t ion  

semi-group of class C e 

0' 

0 

Deffn i t ion  3.3.3. The i n f i n i t e s i m a l  generator ,  A, of t h e  semi-group 

{ 'E t ]  t>O) is defined by 

h 

for a l l  xcX such t h a t  t he  l i m i t  e x i s t s ,  
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The i n f i n i t e s i m a l  generator, A ,  of a seriii-group of class .C has the  
0 

fol.lowini: p r o p e r t i e s ;  . 

.(i) A is a closed l i n e a r  ope ra to r  wi th  domain, D(A) , dense i n  X 

and the zero vec to r  Q & D ( h ) .  - 
,’ 

( i i )  If x&D(A), .then . .  for any tL0, TtxcD(A) and 

d - (Ttx) AT x d t  t 

where d ( T  t x) i s  defined 
d t  . 

. .. 
l i m  [ Tt -E h~ - T x 

-(T X) = hJ.0 ---- d t l  
dt t h 

f o r  XEX, if the l i m i t  e x i s t s .  
. r  

(iii) If 1 I T t ]  I 5 14eBt, then a l l  X with  Ra(A) > B is  in t h e  . .  r e so lven t  

set ,  p ( A ) ,  of A. 

The foflowiiig, r e s u l t  know1 as the iIille-Yosida theorem gives necessary 

arid s u f f i c i e n t  coridit ions f o r  a closed l inear  operator t o  be the i n f l n i t c s i m a l  

generator of a seaii-group, 

’ 

- Theorcm 3.3,2, Let A be a closed. l i n r a r  operator t d t h  domain, D ( h ) ,  

dciise i n  X and rangep R(il‘), i n  X, 

a semi-group {I‘ I t l o )  s a t i s f y i n g  t h e  condi t ion  

Then A is  t h e  i n f i n i t e s i m a l  genera tor  of 

t 

..c 

if and only i f  thcrc exists r ea l  nunibers 14 and b as above such t h a t  f o r  every 

in t ege r  n > 8, ncp (A) and 
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W e  have already introduced the  concept of d i s s i p a t i v e  ope ra to r  

whicli gives  a more a e s t h e t i c  and use fu l  r e s u l t  i n  t he  study of t h e  s t a b i l i t y  

theory of t he  a b s t r a c t  operator  equation 

du(t)  +Au(t)  = 0. 
d t  

The r e s u l t  is due t o  P h i l l i p s  [ 27 ]  

Theorem 3 . 3 . 3 .  L e t  A be a l i n e a r  operator  with domain, I ) (A) ,  dense 

i n  I1 and range, R ( A ) ,  i n  H. 

t r a c t i o n  semi-group of class C 

respect  t o  the  inne r  product on H and R(I+A) = H; and-A i s  the  i n f i n i t e s i m a l  

generator  of a negat ive contract ion semi-group of class C 

if-A is  s t r i c t l y  d i s s i p a t i v e  with r e spec t  t o  the  inner  product on I1 and 

R((1-B)I+A) = H, where B is  t h e  constant i n  d e f i n i t i o n  3 . 2 . 3 ,  

T h e n 4  is t h e  i n f i n i t e s i m a l  generator of a con- 

i n  H i f  and only i f  -A is d i s s i p a t i v e  with 
0 

i n  H i f  and only 
0 

3 . 4 .  Dis t r ibu t ions  and Function Spaces 

I n  the  study of s t a b i l i t y  theory f o r  P a r t i a l  D i f f e r e n t i a l  Equations, 

w e  need t o  examine the  funct ion spaces which de f ine  the  domain of an 

i n f i n i t e s i m a l  generator ,  A, of a contract ion semi-group s a t i s f y i n g  the  

operator  equation 

+Au(t)= 0. d t  

To do t h i s ,  w e  must f i r s t  introduce t h e  concept of D i s t r ibu t ions  and Fourier  

Transformations. 

bouiidary spaces lt (312). This w i l l  l e ad  t o  t h e  *trace theorems' o r  what w e  

iiieaii by t h e  r e s t r i c t i o n s  of functions on t h e  boundary, an. Fina l ly ,  ne w i l l  

d iscuss  the  function space I12m(Q) which is needed f o r  t h e  d e f i n i t i o n  of t he  

Next, w e  w i l l  d iscuss  t h e  Sobolev spaces Hm(S2), and the  

S 

B 
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dornoin of t h e  ope ra to r  A. 

3.41. Distributions 

I n  t h i s  sectfen we t r i l l  d e f ine  and g ive  some bas ic  p r o p e r t i e s  of 

d i s t r f b u t i o n s .  For a more coinplx?te d iscuss ion  see IIorvath [ 15 1 Treves [ 32 1 

and Edwards [lo]. 

... %X ) ER , t h e  I'uclidean n-space, R is an open subset of R e R denotes t h e  

F i r s t ,  we w i l l  use the fo l lowing  no ta t ions :  x = (x1,x2, 
n n -  

n 
n clos&rc of R ip ,It , and dx =: dxl - .  .dx the usual  Lebesqua measure. n' 

n 
where a = ( a l , u Z ,  ,a ) EN w i t h  non-negative i n t e g e r  components and n 

. . . .. . . . . . . ... _ .  . . _  . . ., . . .I._ 

I- Defin i t ion  3.41.1. A real-valued funct ion,  q (x) , defined on a l i n e a r  

- 
We can see d i ~ ~ c t l ~ - ~ h ~ ~  qxx) - > 0 and q(0) = 0. 

Let f (x) be a co1np3.ex-valued (or real-val.uec1) func t ion  d e f i n e d  on s2 e 

Dcfin i t fon  3,41 .2 ,  By Cm(Q), 0 5 nt 2 ~ 1 )  we mean the  s e t  of a l l  --- 
conpfe::-vnl.uxl (or real-valued) func t ions  clef incd i n  R vht ch have continuous 
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m those funct ions of C ( Q )  whose supports  are compact subse ts  of R (a subse t  

of Rn is  compact i f  and only i f  i t  i s  closed and bounded). 

the  set Cn'(Q) o r  C: (a) is a l i n e a r  space def ined by 

I f  0 - < m - 9  < 03 

k -  
C ( a ) ,  0 5 k 5 00, is  the  set  of a l l  func t ions  (complex o r  real-valued),  

such t h a t  f o r  any x ~ n ,  and f o r  any ct,Ic11 2 k(I.1 < k i f  k = w) D'f(x) e x i s t s  

anti D f has  a continuous extension t o  2. ci 

00 

We w i l l  now def ine  a topology on C 0 ( a ) .  Using the  no ta t ion  of Treves,  

we l e t  K be any compact subse t  of 12. Then C:(K) is defined by 

We def ine  on Cw(K) a family of semi-norms 
0 

This makes C:(K) a Frechet space (metrizable and complete). 

l e t  K be an increas ing  sequence of compact sets such t h a t  K CQ, and 

t h i s  def ines  the  induct ive  l i m i t  topology on C o ( Q )  

t h i s  topology i f  and only i f  OnC;(K) is an open set ,  f o r  a l l  K, 1 - < K < QD, 

Topologized i n  t h i s  way, C"(Q) is a l o c a l l y  conve 

Then, i f  we  

n n 
m 

where a set 0 is open i n  

l i n e a r  topologica l  space. 
0 

The convergence l i m  @n = $I i n  C:(Q) means t h a t  t he  following two condi t ions 
rrtco 

are s a t i s f i e d :  

) 

( i i )  

There e x i s t s  a compact subse t  such t h a t  supp (on) K (n = 1 9 2 9 0 0 0 ) e  

n FOP any d i f f e r e n t i a l  opera tor  D'", t h e  sequence Da$ (x) converges 

t o  D ~ @ ( X )  uniformly on K. 

Defin i t ion  3 , 4 % . 3 ,  A l i n e a r  func t iona l  def ined and continuous on 
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C i ( Q )  i s  c a l l e d  a d i s t r i b  t i o n  o r  a general ized func t ion  i n  Q.  

by D'(52) t h e  set of a l l  d i s t r i b u t i o n s  i n  52,  

conjugate space) of Cm(52), where Cm(Q) is c a l l e d  t h e  space of t e s t i n g  

functions.  

w e  denote by < f , @ >  the  value of f on 9.  

We denote 

D ' ( Q )  i s  t h e  dual space (or 

0 0 
m 

For any d i s t r i b u t i o n  f&D'(Q),  and any t e s t i n g  func t ion  @ E C ~ ( Q ) ~  

D' (Q)  is a l i n e a r  space by 

We have two theorems concerning the  cri teria f o r  a l i n e a r  func t iona l  t o  be 

a d i s t r ibu t ion .  

Theorem 3.41.1. A l i n e a r  func t iona l  f defined on C:(n> is a d i s t r i -  

but ion i n  52 i f  and only i f  f is  bounded on every bounded set of C i ( Q )  ( i n  

the  induct ive  l i m i t  topology of Ci(Q)) ,  

Theorem 3.41.2. A l i n e a r  func t iona l  f defined on C i ( Q )  is  a d i s  

but ion i n  Q i f  and only i f  f f s a t i s f i e s  t h e  condi t ion:  

subse t  K of 52, t he re  corresponds a p o s i t i v e  constant  

i n t ege r  m such t h a t  f o r  any @&C:(52), 

t o  every compact 

C and a p o s i t i v e  

Def in i t ion  3.41.4. The de r iva t ive  o f  a d i s t r i b u t i o n  f is defined 

t o  be the  element of D v  ( Q )  denoted by af s a t i s f y i n g  f o r  any @cCi(52) 

axi 

# @> = - < f, .%!L > *  af 
ax 

< -  
i ax, 

Thus, a d i s t r i b u t i o n  i n  52 is i n f i n i t e l y  d i f f e ~ ~ n t i ~ b l @  and Da f 

element i n  D 9 ( Q )  defined by: f o r  any @ ~ C i ( 5 2 )  

l"l 
< D* f9@ > = (-11 e f ,  D ~ +  >. 
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We have the  following p rope r t i e s  of d i s t r ibu t ions :  

2 
( i )  C:(Q)cL (Q)eD '  (52) ;  each space is dense i n  t h e  following where 

f o r  any ucC"(sZ), u is assoc ia ted  w i t h  t h e  d i s t r i b u t i o n  ($ + (u,$) 

2 
( e  , is  the  L - i nne r  product. 

where 
0 0 

(ii) 

by: for  any uoC:(Q) 

For any $EC"(Q) and f E D'(52),  w e  def ine  t h e  product $f 
0 

3.42. Four ie r  Transform Space of Tempered Di s t r ibu t ions  

In  t h i s  s e c t i o n ,  we w i l l  def ine  t h e  Fourier  Transform on the  space 

Then w e  w i l l  def ine  the Four ie r  2 n  '$(Rn) and extend t h i s  t o  the  space L (R ) *  

Transform on the  space of tempered d i s t r i b u t i o n s .  

d e f i n i t i o n  of t he  spaces Hs(Rn) and HS(a52) .  

found i n  Yosida [35] and Treves [32]. 

We need t h i s  f o r  t he  

A more d e t a i l e d  d iscuss ion  i s  

Def in i t ion  3.42.1. L e t  x(Rn) be the  set  of a l l  func t ions  $cCW(Rn) 

n such t h a t  f o r  any a,BoR with non-negative i n t e g e r  components 

B 6 1  $2 'n The topology on (Rn) is def ined by where x = x1x2 e.ax n * 

the  family of semi-norms q ($) = sup IxBDa$(x) I e With t h i s  topology J(Rn) 
a$ 

X C l P  

i s  a l o c a l l y  convex l i n e a r  topological  space whose elements are func t ions  s a i d  

t o  be r ap id ly  decreasing a t  m e  

Defin i t ion  3.42.2, The Fourier  Transform of u E is the  func t ion  
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of < E x n ,  

A 

+ x 5 + e.. + xnSn. We denote i t  by . u ( C ) .  The Fourier  xlsl 2 2 Where (x,t;) = 

Transform, FT, is  an isomorphism of X(Rn) onto g(Rn) with the  given toPologY 

on g(Rn), and t n e  inve r se  mapping is given by 

An important property of the  Fourier  Transform is given by t h e  following 

Plancheral-Parseval theorem, which shows t h a t  FT Presem*s t he  L 

product and norm on $(Rn). 

2 - inner 

Theorem 3.42.1. (Plancheral-Parseval) L e t  $ ,J1 E t(Rn). Then 

2 n  Since 3(Rn) is dense i n  L (R ), the  Four ie r  Transform can be  extended 

2 n  2 n  by con t inu i ty  t o  an isometry,  denoted by FT, from L (R ) onto L (R ). We 

denote by FT the  inve r se  Fourier  Transform. We can see t h i s  is  an isometry 

by theorem 3,42.1. This g ives  us the  following r e s u l t ,  

2 Theorem 3.42.2, L e t  u,v E L ( ). Then w e  have a r s e v a l ?  s formula 
A A  

( U A o  (u,v)* 

A 

and Planci ieralss  formula, I IuI 1, = IIuI I,. 
consider the following diagram 
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These n a t u r a l  i n j e c t i o n s  are a l l  con-inuous and each space i s  dense i n  the  

following space. Hence, w e  can regard 3' (Rn) t h e  dual space of 'g(Rn) as 

a space of  d i s t r i b u t i o n s .  

d i s t r i b u t i o n s .  A cha rac t e r i za t ion  of a tempered d i s t r i b u t i o n  i s  found i n  

the  following theorem. 

We say  t h a t  3' (Rn) is  the  space of tempered 

Theorem 3 . 4 2 . 3 ,  A d i s t r i b u t i o n  i n  Rn is a tempered d i s t r i b u t i o n  i f  

and only i f  i t  i s  a f i n i t e  sum of der iva t ives  of continuous func t ions ,  grow- 

ing a t  - slower than some polynomial, 
n Def in i t ion  3 . 4 2 . 3 .  The Four ie r  Transform on 3'(R ),  is the  t ranspose 

of the  continuous l i n e a r  map, FT, which maps u E 3(Rn) i n t o  the  func t ion  of 

SERn 

The t ranspose of FT, tFT, is t h e  element of 3' (Rn) defined by t h e  following: 

€or any u E 3'(R ) and any 9 E j (Rn) ,  n 

t < FT(u),$ > = <u,FT($) >. 

T h i s  def ines  the  Four ie r  Transform on 

which extends t h e  Fourier  Transform i n  the  space of func t ions  L (R ). 

have the following theorem by Treves [32].  

' (Rn) which w e  w i l l  denote by FT, 

We 2 n  

Theorem 3 , 4 2 , 4 .  The Fourier  Transform i s  an isomorphism from t h e  

l i n e a r  topologica l  space ( R ~ )  onto Y (R") 



36 

3 . 4 3 ,  The Sobolev Spaces, # ( a ) ,  

We w i l l  f i rst  consider R and p l ace  t h e  following r e s t r i c t i o n s  on R 

(which w i l l  hold except when otherwise s t a t e d ,  i.e. R = R"). 

R is a bounded domain i n  Rn. The boundary, denoted by an, is a n  

i n f i n i t e l y  d i f f e r e n t i a b l e  manifold of dimension (n-l), (3-1) 

S2 bring l o c a l l y  on one s i d e  of an, i .e . ,  w e  consiaex $2 a v a r i e t y  w i t h  bound- 

a ry  of class C and i 2  l o c a l l y  on one s i d e  of an. 

- 
OD 

We denote by d(aR) the  s u r f a c e  measure on a R  induced by x. 

now give a b r i e f  discussion on what is meant by (3-1)e Refer t o  Auslander [ 4 ]  

We w i l l  

and Auslander, Mackensie [5] f o r  a more thorough discussion of t h e  sub jec t .  

The as2 i s  a su r face  which can be L e t  R be an open subset  of Rne 

defined by a f i n i t e  number of funct ions f .  (xIsx2,. . e ,x  ) (1 2 i 

f o r  any i, 1 2  i 

s) where 
1 n 

s ,  f i  E C"(Rn) and a R  s a t i s f i e s  

On as2 w e  a s s ign  t h e  topology induced on i t  by t h e  topology of Rn. Also, on 

a R  we assume t h e r e  are no s i n g u l a r i t i e s ,  i .e.,  f o r  any xeaR, t h e r e  e x i s t s  a 

neighborhood, N(x), such t h a t  f o r  every xsN(x)tTaR 

de t 

We can s ta te  t h e  following more a e s t h e t i c  equivalent  d e f i n i t i o n  of (3--1)$ 

where f o r  s i m p l i f i c a t i o n  w e  w i l l  de f ine  C (A,B) as t h e  set  {u~C~(A)lll(u)CA, 
W 
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Rn-l (i) FOP any xcaQ, there  exist an open subse t  and t h e r  

x i s t s  an n&CW(W,R"), n is on -to-one, such t h a t  w ( W )  = U, an o 

o f  an. A11s0, t h  exists an open subset KR",  and the re  ex i se s  -5 B 
such t h a t  K O  and F *n is the  i d e n t i t y  on W (se 

r (n,W) def ines  coordinate neibhboshood on an, 

ch poin t  of an. W e t h e  following compat i l i t y  condi t ion,  

and (n ,W ) are? any two coordinate neighborhoods on an such th B B  

Figure 3.1 

Essen t i a l ly  what we mean is t h a t  an is an 

which l o c a l l y  looks l i k e  R*-'~ 

is l o c a l l y  on one s i d e  of t he  boundary, an, means 

sts a m ~ i ~ h b o y h o o a  of xIN(x), such that N(x 

on  ne side of as1, i.e., 
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f i n e  the Sobol 

enes El81 and Yosida E351 for m 

n subset of the Euclid 

and 

then Hm(Q) becomes a Hilb c nota that convergence i n  ~ m ( ~ ~  o 

u 4 u  
Hm(S2) 

the d 

roduc 
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t h a t  C:(Q) is  no 

dcf i n i t i o n  of 

Hm(a>, 8s t h e  c losur  of C i ( Q )  i n  t h e  Hm - norm. 
0 

3 , 4 4 .  The Boundary Spaces IIs(8S2), s 0 

I n  t h i s  s ec t ion ,  we w i l l  def ine the  bowda space HS(3Q) 

of i t s  proper t ies .  Lions d Mage~@s i n  [18],  Schechter i n  [ 2 8 ]  

S more complete d iscuss ion  of H (aQ), Btfor defining t h  

m u s t  def ine  the  space HS(Rn), 

Hs(Rn) is defined as f o l l  

L e t  s be any nonnegative rem1 number., then 

S 
s n  2 n  
H (R = {u&Rn) I(1 + [El2) '  ;(&)EL (R 1) 

A 

(R") is the space of t d i s  t r i b u ~ i o n ~  d u(E) is the Fourier  

Transform of u. For any 

nd a 
H' (R") 

I lul  I 

$ (R") i f  we def ine  

hen Hs (Rn) become e Convergence i n  H'(R~) means t h a t  
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W@ N s ( a m  ~rom our 

ssmption on 62 of 

of R", Ui( I~i~bT), 

can find a fi 

aQ such that for e 

infinitely differe which maps Ui onto th 

See figure 3 . 4 .  

I 

I 
= 0 

t Bi is i n ~ @ ~ t ~ ~ ~ ~ ,  that is, i f  8 i (x) = y s  then 

1scp ~ h a n g i ~ g  from posit iv  

YS 

u 1 onto e (U nu in such a way that fa 
j J i J  
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6321, Th t i s f y  the f o l  

( i f )  f o r  any i ct support  i n  u nan; i 

ai(x) 2 0; 

Note t h a t  C"(aQ) i s  the  set of all i n f i n i t e l y  a i ~ f e r e n t i ~ b l  

 OX^ aa. 

a 

Now i f  u is a re 1 o r  complex-valued funct ion defined on aQ ( for  

1 ins tance  m L  (an) then w e  can decompose u (as a sum of L1 func t ions ) ,  

ans t h a t  f o r  any xEaQ, u(x) = li ai(x)u(x)) .  We not  

Now we can def ine  any i,lLizNs a u has compact support  i n  U naa. 

8 ( a i d  from a u i n t o  the  s c a l  f i e l d  K of re 

the following manner: f o r  

i' i * 
i l +  

t by zero o 

on 3.44.1, Le 

0 Is 
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.A; 

n-1) i n t o  Cm(R ga 

n-l) ng from  an) onto D @ ( R  

We w i l l  now d 

real number, 

Then 

N i c  dcf i n i t i o n  is  independent of l o c a l  coordinates  { (ei,Ui) lip1 
N and p a r t i t i o n  of un i ty  {ailimlo 

Let u,vcHS(~Q) e 'Pf we def ine  

Hs(a62) becomes 8 Hi lbe r t  space. 

Also, i t  can be shown t h a t  the various noms which depend on ( 0  

We w i l l  denote the nom on Hs(aS2) by < e > s .  

U ,a i9 i 

i f  
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f9'2 ( i i )  I f  $2 s a t i s f i e s  (3-1)$ and i f  s 

2 S S 
t h a t  s >s >O then 1 1 6  '(352)cW. (an) and t h e  i d e n t i t y  i n j e c t i o n  f 

(352) is completsly continuous, 

3.45. The Trace Theorems 

I n  t h i s  s e c t i o n s  w e  w i l l  b r i e f l y  d i scuss  the  trace theorems and 

j u s t i f y  t h e  d e f i n i t i o n  of t he  trace of a func i o n  on the  boundary and the  

function spaces i n  which they are defined, 

f u l l y  discussed i n  Peetre [ 26 I Schechter [ 281 and Agmon-Douglis-Nirenberg 

121. 

Magenes [18]. 

boundary see Volevich-Paneyakh [331. 

The following two theorems which are t h e  b a s i c  r e s u l t s  f o r  t h e  

The methods we will use are more 

For a d i f f e r e n t  approach y i e ld ing  the  same r e s u l t s  see Lions and 

Also, f o r  a discussion of the t r a c e  of a func t ion  on t h e  

trace theorems are proved i n  Pee t re  [26] and Schechter [28]. 

Theorem 3.45.1, L e t  ha s a t i s f y  (3-1) and m be any p o s i t i v e  
a -  

in teger .  I f  W C  (Sa) and y u denotes che r e s t r i c t i o n  o f  u t o  t h e  boundary, 

W, then w e  h e t h e  following inequa l i ty ,  

independent of u, such t 

0 

There e x i s t s  a constant,  Km3 

2 

m-A 
O D -  

nce c (Q) is dens an H (an), t h e  

caw be ~ x t ~ n d e d  b 

by yo such t h a t ,  
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s t h a t  the  trace of an element ue€?(Q), denot 
m-L 

considered as element i n  H 2 (Xi). Con r s e l y ,  f o r  any VEH 2 (aS2), 
m-L 

e x i s t s  a u€Hm(Q) such t h a t  v = youo or v is the  tr ce of u i n  H 2 ( a ~ ) ,  

Another way t o  look a t  the  trace of an element 
w -  

is  as follows : i f  u~Ifn(Q) then f o r  sequence uncC (Q), such t h a t  

nd if youn is  t h e  r e s t r i c t i o n  of un t o  t h e  boundary, an, 

then 
- + v  a s n + -  youn m-A 

H 2(13Q) 

m-A 
where v, denoted by you, is t h e  trace of u i n  H 2(aQ). 

We have j u s t  defined wha we mean by the traceo youg of an 

ucHm(Q), Now w e  w i l l  consider the  d i s t r i b u t i o n  1 der iva t ive ,  Dau, 

what w e  mean by t h  trace of th i s  func t ion  on the  bou 

Theorem 3.45.2. Let Q s t i s f y  (3-1) and m be any 
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dad by c o n t i n ~ t y  to a CORt%nUOUS 1 

by yoDa such t h  

u + yo(Dau)): 

m-k This means t h a t  i f  u~E?( !2 )~  s i n c e  DaucH (a), then the  trac 9 Y0(D% 9 of 
m-k-A 

Dau can be  considered as an element i n  H 

VEH 

of ~~u i n  H 2(aa). 

2(aQ) e Conversely, f o r  
m-k-r 

2(3!2) t h e r e  e x i s t s  a u&p(Q) such t h a t  v = u,(Dau) o r  v is  t h e  trace 
m-k-1 - 

Remark 3.45.2. A s  i n  rema 3.45.1, we can consider t he  bs 
O D -  

Dau i n  the  following way: 

t h a t  

if uc$(Q), then for any sequence uric@ (a)  such 

u - u  

and i f  yo(Duun) is t h e  ~ e s t r i ~ b ~ o n  of Da boundary, aQ t h e  
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xtended by cont inui tv  t o  a continuous l i n e a r  mapping denoted by 

Conversely, t he re  e x i s t s  a continuous l i n e a r  mapping denotad by 

m-1 
({vo,vl, ..., v 1 + u): fl H2m-j-$(aQ) + H2m(Q) 

1 =o m- 1 

2m-j-L(aC2) I) t he re  , where v EH m- 1 
2 such t h a t  f o r  any set of funct ions,  {vj} 

e x i s t s  a UEH 
j =O j 

= V j ¶  (Q), such t h a t  (s) u 0 - < 9 ~ m - 1 .  2m a 3  

2m m -  
Remark 3.45.3. I f  UEH (Q), and for any sequence uncC (a ) ,  such 

t h a t  

where \z) a j  uncCa(X2) is the  jth - normal d ~ r i v a ~ i ~ @  at  t h e  boundary, a Q ,  

then 

d i f  v is denoted by then t h e  j h  - noma1 d va t ive  is  considered 

H2na-j -1 e n t  of t h e  bo $an> a 

Q o -  

Now l e t  ah6 consider,  for UEC ( a ) ,  t h  

n t i a l  boundary op 
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is t h e  
mj 

with nonnegativ@ i n t e g e r  components b (x)cCw(aQ) 
j h  

h h d y (D u) is t h e  r e s t r i c t i o n  of D u on 82. Unless 
0 

boundary operator ,  B ( x , D ) u ,  w i l l  be denoted by B ue 
J J 

We have t h e  following theorem due t o  Gerd Grebb [ l a ] ,  which w i l l  expla in  

what is meant by t h e  trace of B.u on t h e  boundary, an. 
J 

w -  
Theorem 3.45.4. L e t  C2 s a t i s f y  (3-l)a ucC (a ) ,  m any p o s i t i v e  

and B u defined above. 

such t h a t  

Then the re  e x i s t s  a constant ,  Kms independent of u 3 

Hence, t h e  mapping 

(u -+ B u): C"(5) + C"(aQ) 3 

be @ x t e n ~ ~ d  by cont inui ty  t o  continuous l i n e a r  mapping denot 

B such t h a t  
j 

+ B u): H2m(Q) + H*m 
j 
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2m-m -1 
re v is denoted by B.u j 2(a56), ~ e n c e ,  t h e  trace, 

j '  J 
B u, of u can be  considered as an 3 

2m W e  have shown t h a t  f o r  EH (Q), B4u(Oc-JLm-l) can be considered 

B u =  3 

J 

H2m-m -L 

f o r  ~ E H ~ ~ ( Q )  

J 2(a56)e I n  t h i s  work w e  e r e s t ed  i n  the  bound- 

(3-3) 

The following r e s u l t  w i l l  expla in  it 's meaninge 
w -  

Theorem 3.45.5. L e t  56 s a t i s f y  (3-1) ucC ( Q )  and B be the l i n e a r  
j 

boundary operator  def ined above. For the  mapping 

B :c31)3u + od'(an) 
j 

t h e  extension i s  a continuous l i n e a r  map denoted by 

2m-m -1 B : H2m(51)3u * OEH j $856) 
j 

2m Th3s shows t h a t  for UEH (561, t h  boundary condi t ion (3-3) means 
2m-m -1 t B 01 is t he  zero element i n  H j 2(856), which w e  w i l l  deno&e by 

j 

o t e  t h a t  the  ke rne l  of t he  map B is defined as s 

3.45,5. We rest ict  OUK discussion t o  the  D i r i c h l e t  
G v -  

problem, defined by:: f o r  any UCC (Q), and any xsa56 
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( O g L m - 1 )  

om t h e  r e s u l t s  above w e  see the  general ized Di r i ch le t  bounda 

have the  following form: f o r  any j (OLJLm-1) I t h e  l i n e a r  mapping 

(-1 a j  : cco(F13u + oscoo(as2) 
an 

has an extension which we denote by such t h a t  an 

a 3 :  ~ ~ ~ ( 0 ) 3 u  -+ O ~ H  2m-j-1 ?(an). (32 

Thus t h e  general ized Di r i ch le t  problem can be w r i t t e n  

2m-j-1 
where (&)'u is t h e  zero element i n  H $30). Note t h e  Kernel of t h e  map 

This fol lows d i r e c t l y  from a theorem found i n  Lions and Magenes [18] which 

r a c t e r i z e s  ; 

2m 
R 

3 , 4 G .  The Spaces li (iq), 

an our  s tudy of t h  b i l i t y  p m b l  %tract operator  
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duo 9 Au(t) = f ( u )  
d t  

w e  need t o  def ine  e x p l i c i t l y  t h e  

s a t i s f i e s  the  condi t ions o 

i t  can be u t i l i z e d  i n  solving t h e  p a r t i a l  d i f f e r e n t i a l  equation 

n of t h e  operator  A, so 

being dense i n  the  base Hilberct sp 

-I- A ( x , D ) u ( x , t )  = f tu) ,  a t  

2m m 
B I n  t h i s  s ec t ion ,  w e  w i l l  def ine  t h e  spaces H 

t o  the  d e f i n i t i o n  of D(A). 

( S i )  and HB(Q) which are v i t a l  

F i r s t ,  w e  m u s t  def ine  the  func t ion  spaces and C i ( Q ) ,  

where B = {B Im-’ is  t h e  system of boundary opera tors  def ined i n  3.45. 

Si s a t i s f y  (31 )e  

L e t  
j P O  

The following d e f i n i t i o n s  are equivalent:  
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(iv) H F ( Q )  = completion of C2m(Q) i n  t h  B 

t h a t  Lions and  agenes I181, us d e f i n i t i o n s  (iIs (ii), and 

[l], Schachter 1281 and F r i  dman [ll] us s d e f i n i t i o n  (iv), 

of (i) ( i i )  and (iii) follows d i r e c t l y  from t h e  d e f i n i t i o n  

of B j 2  theorem 3.45.4-and remarks 3,45.4 and 3.45.5. 

equivalence of ( i i i )  and (iv) is  l e f t  t o  t h e  

The proof of t h e  

We w i 1 1  now d e ~ i n ~  $ ( a ) ,  as t h  completion of Ci(S2) i n  the  

H" - norm, 

m 
Remark 3.46.1. From [18] w e  can cha rac t e r i ze  the  spaces HB(Q) 

with the  following equivalent  d e f i n i t i o n ,  

q(n)  - h€Hm(Q) 

m-1 where {B 1 is t h e  system 5 jpDo 

= 0, f o r  a l l  B such t h a t  m em)  3 5 

of boundary opera tors  defined i n  s e c t i o n  3.45. 
m - l  Remark 3.46.2. I f  w e  restrict  {B 1 t o  be t h e  D i r i c h l e t  bound- 5 5=0 

ary opera tors ,  

2m en w e  have the  def n i t i o n  f o r  t he  s p  ce HB ( Q ) ,  which c 

Friedman [ l a ]  d-Schwsrrtz [91 
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4,O. STABPLITY THEORY FOR OPERATOR 

DIFFERENTIAL EQUATIONS I N  A REAL HILBERT SPACE 

i n  l i n e a r  p a r t i a l  d i f f e r -  

1 equations can be p l  ced i n  t h e  form of an operator  d i f f e r e n t i a l  

equation, see (4-1) below, and the  problem of t h e  exis tence,  uniqueness 

and s t a b i l i t y  of the  s o l u t i o n  t o  the  p a r t i a l  d i f f e r e n t i a l  equation can be 

solved by considering the  re1 ted  s t a b i l i t y  problem f o r  t he  operator  

equation (4-1). 

f o r  t h e  opera tor  d i f f e r e n t i a l  equation, where A is ,  i n  general ,  an un- 

bounded l i n e a r  o r  nonl inear  opera tor  with domain and range both contained 

i n  the  real Hi lbe r t  space,  H. 

I n  t h i s  chapter  we w i l l  consider  t he  s t a b i l i t y  problem 

4.1. S t a b i l i t y  Theory of Linear D i f f e r e n t i a l  

Equations i n  a Real Hi lber t  Space 

In t h i s  s e c t i o n  w e  w i l l  be  concerned with the  exis tence,  

uniqueness and s t a b i l i t y  of a s o l u t i o n  t o  t h e  opera tor  d i f f e r e n t i a l  equation 

4- A u ( t )  = 0 d t  

re A is, i n  genera l  r opera tor  with dom i n ,  D(A) and 

ge, R(A), both cont 

(t), is a vector  v lued func t ion  def ined on [O,-) t o  H. 

We note  t h a t  A can be cons s t h e  extension o f  a l i n e a r  

ed in a real Hi lbe r t  spac  

rtiaX d i f f e r @ n t i ~ ~  o 

t o  study the  sa: ion  of (4-1) with- 

c&uaa%ly f ind ing  t 

propcarties of a s 
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t h e  semi-group {'E I t l o )  of bounded l i n e a r  opera tors  on a Hi lbe r t  space H ,  

then a s o l u t i o n  t o  (4-1) with t h e  i n i t i a l  value u( to)  = uosD(A) i s  given 

by u ( t ;uog to )  = Ttuo f o r  a l l  t>to,with u( to;uo9to)  = uoo 

to impose condi t ions on t h e  opera tor  A so t h a t  i t  w i l l  be  the  i n f i n i t e s i m a l  

generator  of a semi-group, which w i l l  ensure t h e  ex is tence  of a s o l u t i o n o  

Then, t h e  s t a b i l i t y  of t h i s  s o l u t i o n  can be e s t ab l i shed  from t h e  semi- 

group proper t ies .  This has been done by Pao [23] and Buts [7], where a 

more complete d iscuss ion  is givenewe w i l l  s tate some b a s i c  d e f i n i t i o n s  

and some r e s u l t s ,  

t 

Hence, i t  s u f f i c e s  

Def in i t ion  4.1.9. A so lu t ion ,  u ( t ) ,  of t he  equat ion (4-1) with 

i n i t i a l  condi t ion u(o) = u~ED(A) means: 

( i )  u ( t )  is uniformly continuous i n  t ,  €or a l l  t20,  with 

u(0) = uo; 

( i i )  u(t)ED(A), f o r  a l l  t20 ,  and Au(t) is  continuous i n  t f o r  

a l l  t20 ; 

( i i i )  The de r iva t ive  of u ( t )  exists ( i n  the  s t rong  topology),  

f o r  every t>O, and equals  (-A)u(t). 

Def in i t ion  4.1.2. An equi l ibr ium s o l u t i o n  of (4-1)9 denoted by 

u ( t )  = ueD is a s o l u t i o n  u ( t )  of (4-1) such t h a t  

Llefinition 4 . 1 . 3 .  An e q ~ i l i b r i ~  s o l u t i o n  ue of (4-1) is s a i d  

t o  be  s t a b l e  (with r e spec t  t o  i n i t i ~ l  pe r tu rba t ions )  i f  given any E > O ,  

t he re  e x i s t s  '0, such that 
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u is s a i d  t o  be asymptot ical ly  s t a b l e  i f  e 

( i )  i t  is s t a b  

re u ( t )  is any s o l u t i o n  of (4-1) with u(o) = uoeD(A)* 

In  t h i s  d e f i n i t i o n ,  s t a b i l i t y  and asymptotic s t a b i l i t y  are taken 

with respec t  t o  t h e  H - normo It is clear from t h e  above d e f i n i t i o n  t h a t  

i f  OeD(A), then u I 0, t he  n u l l  so lu t ion ,  i s  an equi l ibr ium s o l u t i o n  of 

(4-1). Since the  domain of t h e  operator  A contains  the  zero vec tor ,  i t  

follows t h a t  t he  s tudy of the  s t a b i l i t y  problem of an equi l ibr ium Solu t ion  

t o  the  l inear equation is equivalent  t o  the  s tudy of t he  s t a b i l i t y  p rope r t i e s  

of t he  n u l l  so lu t i an .  We should note  t h a t  the  theory is  not  l imi t ed  t o  

equi l ibr ium so lu t ions ,  bu t  is a l s o  v a l i d  by s t a r t i n g  from any i n i t i a l  elements 

u e D ( A ) ,  with s o l u t i o n  u( t ;uo , to)  which is  not  an equi l ibr ium s o l u t i o n  

(such as a per iodic  so lu t ion  o r  any unperturbed so lu t ion) .  

0 

We are a l s o  i n t e r e s t e d  i n  t h e  region of s t a b i l i t y .  

Def in i t ion  4,1,4. L e t  u ( t )  be a s o l u t i o n  t o  (4-1) with 

u(o) = uo. 

equi l ibr ium so lu t ion  ue i f  f o r  any E>O, t he re  e x i s t s  a D O  such t h a t  ueD 

and I Iu - u Il<S imply llu(t) - u ~ I I ~ < E ~  f o r  a l l  t~0. 

A subse t  I) of B is  s a i d  t o  be a s t a b i l i t y  region of t he  

e 

A s  can be seen from theorem 3.3.3, t o  ensure s t a b i l i t y  i t  is  

required t h a t  A be d i s s i p a t i v e  with respec t  t o  t h e  inner  product of t h e  

space He However, Buis i n  [ 7 ]  proved t h a t  i f  A is d i s s i p a t i v e  with r e spec t  

t o  any inner  product equivalent  t o  the  one def ined on H ,  then A i s  t h e  

i n f i n i t e s i m a l  generator  of a cont rac t ion  semi-group and s t a b i l i t y  is 

ensured by t h e  equivalence of the  norms and the  p rope r t i e s  of semi-groups. 

The following theorem found i n  Buis [7] gives N . A , S , C .  t o  @ R S U ~ @  t h a t  two 
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i nne r  products are equivalent .  

Theorem 4 , l . l .  L e t  HI = (H9(e9e ) l )  be a real Hi lber t  space,  

An inner  product 

t h e  inner  product 

p o s i t i v e  d e f i n i t e ,  l i n e a r  opera tor  S&L(H1,H1) such t h a t  

defined on the  l i n e a r  space H is  equivalent  t o  2 

i f  and only i f  t h e r e  e x i s t s  a symmetric, bounded, 

W e  w i l l  now def ine  Lyapunov func t iona l s  which are used 

extensively i n  t h e  s tudy of s t a b i l i t y  theory,  as w e  saw i n  Chapter 2.  

These d e f i n i t i o n s  are found i n  Pa0 [23]  and Buis [7]. 

Defin i t ion  4.1.5. A Lyapunov functiional on a real Hi lbe r t  

space H i s  defined through the  symmetric b i l i n e a r  form 

V(U,W> = (u,sw)l = (w,su)l f o r  a l l  u,wcH1 

where SEL(H ,H ) is  a symmetric ( se l f - ad jo in t ) ,  bounded, p o s i t i v e  

d e f i n i t e ,  l inear  operator .  The Lyapunov func t iona l  is defined by 

1 1  

It follows from the  above d e f i n i t i o n  and theorem 4.1.1 t h a t  

V(u,w) def ines  an i nne r  product equivalent  t o  t h e  inne r  product 

defined on Hle 

Buis 173 which gives  s u f f i c i e n t  condi t ions o 

and s t a b i l i t y  of t he  n u l 1  so lu t ion  of (4-1)o 

changed t o  f i  i n t o  t h e  ~ o ~ t ~ ~ ~  of t h i s  discussion. 

We now have t h e  following r e s u l t  due to  Pao [23] and 

A t o  ensure the  ex is tence  

The nota t ion  has been 

Theorem 4.1.2. L e t  A be t o r  with domain D( 

dense i n  H range [{(A) i n  111 ))= Il l .  Then t h e  n u l l  so lu t ion  IS 

of (4-1) is asymptotic l e  if t he re  exists a Lyapunow funct iona l ,  
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v(u) ,  such t h a t ,  fo r  some $ 0, 

"1 
f o r  all UED(A) 

(where $ is the d i s s i p a t  

Remark 4.1.1, 

i t y  constant)  

From t h i s  theorem, w e  can see t h a t  i n  order  t o  

s tudy t h e  s t a b i l i t y  problem f o r  (4-1)9 i t  is not  necessary t o  cons t ruc t  

t h e  so lu t ion  t o  the  d i f f e r k n t i a l  equation, bu t  i t  s u f f i c e s  t o  cons 

a Lyapunov func t iona l  s a t i s f y i n g  the  condi t ions of theorem 4.1.2, which is 

the  same as f ind ing  an inner  product equivalent  t o  the  one defined on the  

Hi lbe r t  space H, with respec t  t o  which t h e  l i n e a r  operator  -A is  s t r i c t l y  

d i a s ipa t ive ,  t h a t  is, s ince  V(u,w) = (u ,~) , , ,  we need only show t h a t  A 

s a t i s f i e s ,  i n  addi t ion  t o  

(us (-=A)uI2 5 - 

6 

t he  hypothesis of theorem 4.1.2, 

4.2. S t a b i l i t y  Theory of Nonlinear 

D i f f e r e n t i a l  Equations i n  a Real Hi lbe r t  Space 

We also discuss  t h e  n o n ~ i n @ ~ ~  d i f f e r e n t i a l  equation 

d t  4- Au(t) = f ( u )  (4-2) 

closed, l ~ n ~ ~ ~ ,  unbound t h  domain and r 

a red. Hi lbe r t  spac  N, and f is ,  i n  gene a n o ~ ~ i n ~ a r  

11 of €3 i n t o  H. In 7c operator  equ 

we need t h e  fol. 

c t i o n  s@mi-groug, 

concepts are discussed in Pa0 [23Ie 



57 

Defin i t ion  4,2.1. L e t  H be  real Hi lbe r t  space. The family 

(Ttlt>O) is c a l l e d  a continuous semi-group of n 

on lI o r  simply (nonl inear)  cont rac t ion  semi-group on H i f  t he  following 

condi t ions hold: 

near cont rac t ion  opera tors  

( i )  f o r  any f ixed  t20, Tt is a continuous (nonl inear)  opera tor  

defined on B i n t o  H; 

( i i )  f o r  any f ixed  u ~ E H , T  u 

( i i i )  TsTt = Ts+t f o r  s,tlO and T 

( iv)  

is  s t rong ly  continuous i n  t; t o  

= I ( the i d e n t i t y  opera tor ) ;  
0 

I lTtu - Ttvl 121 Iu - V I  I f o r  a l l  U ~ V E H ,  and all t20. 

I f  ( i v )  is  replaced by, 

I Iu - vl I (f3>0) f o r  a l l  U,VEH, and a l l  I - B t  
( iv )  I l T t U  - TtvI ILe 

t20 ; 

then IT t  I tL0, is c a l l e d  a (nonl inear)  negat ive cont rac t ion  semi-group on H e  

Def in i t ion  4 . 2 . 2 .  The i n f i n i t e s i m a l  generator ,  A, of the  

nonl inear  semi-group {T I t>O) is  defined by 

T U-u Au = w - l i m  h 
h+O h 

f o r  a l l  UEH, such t h a t  t he  limit on t h e  r i g h t  s i d e  e x i s t s  

of weak conv 

Def in i t ion  4 2 . 3 ,  An operator  (nonl inear)  A wi th  domain, D(A) 

and range, R(A) ,  both contained i n  a real Hi lbe r t  space H i s  s a i d  t o  be 

d i s s i p a t i v e  with respect t o  the  inner  product on €I, i f  

u - Av,u-v)~ 5 0 



58  

for a l l  u,vED(A) e H 
(Au - Av, u-v) a - B (u-v,u-v) H -  

Note t h a t  when A is l i n e  i t i o n s  coincide with the  usual  

d e f i n i t i o n s  of d i s s i p a t i v i t y  (see d e f i n i t i o n  

Def in i t ion  4.2.4. u ( t )  is s a i d  to  be a so lu t ion  of (4-2) 

i f  i t  s a t i s f i e s  t h e  following condi t ions:  

( i )  For each u(o)eD(A), u(t)cD(A) f o r  a l l  t > O ;  - 
( i i )  u ( t )  is uniformly Lipschi tz  continuous i n  t ;  

(iii) 

equals (-A)u(t) C f ( u ( t ) ) ;  

t h e  weak de r iva t ive  of u ( t )  e x i s t s  f o r  a l l  t20 and 

= {-A)u(t) 4- f(u,(t)) ,  e x i s t s  d t  ( iv )  t he  s t rong  de r iva t ive ,  

and is s t rong ly  continuous except a t  a countable number of values  t. 

Def in i t ion  4 .2 ,5 .  An equi l ibr ium s o l u t i o n  of (4 -2)  is an 

element, u eI)(A) s a t i s f y i n g  4-2) ( i n  t h e  weak topology) such t h a t  f o r  

any s o l u t i o n  u ( t )  of (4-2) with u(o) = ue 

e 

By considering t h e  opera tor  AI = -A + f w e  obta in  t h e  following 

nonl inear  operator  d i f f e ~ @ n ~ i a ~  t i o n  

= Apu(t) d t  ( 4 - 3 )  

with t h e  nonlinea ing  both domain and 

ce Ha As i n  s f i n d  condi t ions on Al which 

ange i n  t h e  re 

tor of a nonlinear  s e m i -  

t o  ( 4 - 3 ) .  Th 

m the  p rope r t i e s  o 
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We have the  following r e s u l t  by Pa0 K231, 

Theorem 4,2.k, L e t  A b n l i n e a r  operator  with domain l 

and range both conta i  d i n  a real Hi lbe r t  space H = (H, (e a )1) such t h a t  P 
R(I-A1) = H. 

t r a c t i o n  (negat ive cont r  c t ion )  semi-group { T t l t l O )  if and only i f  any one 

of the  following is t r u e  

Then Al is the  i n f i n i t e s i m a l  generator  of a nonl inear  con- 

) The Lyapunov func t iona l  v(u)  = ( u , u ) ~ ,  where ( e , e ) 2  is  

s a t i s f i e s  an inner  product equivalent  t o  

. * 
V(U-W) a 2(A U-A w , u - w ) ~  5 0 (v(u-W) 2(A u-A~w~u-w) < -6 1 1  1 2 -  

2 I I u-wl12) for any u ,wED(A~) ,  and B > 0. 

( i i )  A is d i s s i p a t i v e  ( s t r i c t l y  d i s s i p a t i v e )  with respec t  t o  

1' which is any inne r  product equivalent  t o  (.,.) 

I n  t h i s  work, we w i l l  consider t h e  case wheee Al = -A + f 

where -A is t he  i n f i n i t e s i m a l  generator  of a l i n e a r  cont rac t ion  semi-group 

and s a t i s f i e s  t h e  condi t ions of s e c t i o n  4.1. Conditions m u s t  be placed on 

t h e  nonl inear  func t ion  f ( u )  so theorem 4 .2 , l  can be appl ied t o  the  operator  

A 9 f ,  and ensure the  ex is tence ,  iqueness and s t a b i l i t y ,  o r  asymptotic 

s t a b i l i t y  of a s o l u t i o n  t o  (4-2), Pa0 showed i n  E231 t h a t  i f  f s a t i s f i e s  

(4-4) below, and A s a t i s f i e s  t h e  hypothesis of theorem 4,1.2 then the re  

so lu t ion  t o  (4-2) which is s t a b l e ,  o r  asymptot ical ly  s t a b l e  i f  

B 0, where B is  the  cons a n t  i n  theorem 4,1.2, 

f maps a l l  of L ($2) i n t o  L (a), where f 

s t rong  topology of L (a )  t o  the weak topology of 

2 2 

2 

is continuous from the  

2 L (Q), and f maps all 
( 4 - 4 )  2 bounded subsets  of L ($2) i n t o  bounded setsD Also, t he re  e x i s t s  a constant  

k < (3, k can be negat ive and B is  the  d i s s i p a t i v i t y  constant i n  (6-7), such 

that f o r  every U , V E L  (Q) 2 

( f (u)-~f(v) ,u-v)o 5 kl Iu-vl Io. 2 
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5 , 0 ,  QBERATQRS 

d t  
e 

is t he  ex tens io  concrete  p a r t i a l  d i f f e r e n t i a l  oper 

A ( x , D ) ,  and the  € ~ n & t i o n s  t h a t  t h f e  operator ,  A, acts on are 

prescr ibed func t ion  space, D(A), charac te r ized  by the  boundary condi- 

tions which these  func t ion  

I n  t h i s  chapter ,  w e  w i l l  de f ine  more e x p l i c i t l y  what is meant 

t h e  proper- by t h e  concrete  par  i a l  d i f f e r e n t i a l  opera tor  and d iscus  

t ies  that this operator  has. The boundary condi t ions which eharae- 

terize the  func t ion  spacep D(A), can themselves be considered as 

Certain r e s t p i ~ t i o n a  w i l l  be  

and the  s ign i f i cance  of these  
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if la1 - o t he  opera or D" denotes the  d e n t i t y  operator ;  
a al "2 an 

E a 5 %  5 2  ) * 0 1 )  5, i 8 real number; a,(x) is t he  funct ion 

UB) f i r s t  def ine  a f o  a l  paotjbal d i f f e r e n t i a l   operator^ 

Def in i t ion  5,1,P, L e t  t h e  operator  

where R is a p o s i t i v e  ~ n t ~ % e r  and 

i n € i n i t e f y  d i f f e r e n t i a b l e  f u n ~ ~ i o n s  defined on an open set !d C= Itn, 

e c o e f f i c i e n t s ,  a,(x)@ ar 

c i t  l a t e r ,  i n  (5 -9 ) ,  en 

ial o p e ~ a ~ o ~  of order  a ,  

f 
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e t  

i a l  d i f f e r e n t i a l  operator  of order  E e  defined 

bounded domain Qc Rn, A(x,D)  is  s a i d  t o  be e l l i p t i c  a t  xo E QB i f  f o r  

0 real vec tor  E i n  R" 

The following theorem j u s t i f i e s  t h e  f a c t  t h a t  t he  order  of 

A(%, D) is  evenS t h a t  is, E * 2m, f o r  same in t ege r  m e  

Theorem 5 e 1 e 1 a  I f  n > 2,  of i f  a,(x) are real f o r  t h e  case 

n = 2, then every e l l i p t i c  operator  is of even order ,  

-.11111 Proof. L e t  5, 5' E. Rn be l i n e a r l y  independent, Consider t h e  

polynomial, of t h e  complex va r i ab le  'Ie Ao(x, 5 STS'), We have 
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is real w e  now have the  i o n  a b w e  ha  

roots  e there  mu e i n  complex conjugate p a i r s ,  

Therefore, these  poei t ive imag i n a  

with negative imaginary p a r t  

equation (5-3) does not  admit real roots  when S 8  is 

f ixed and 5 runs through 3 

9 = {E E Rn 1 5 8 l i n e  which passes through f0) and E' 

Since A0(x,S' )  is  not  zero and does not depend on 5 ,  then the  roo t s  

of (5-3) depend continuously on 5 E J, A l s o ,  the  number of zeros of 

Ao(x, E + T5') is  constant,  f o r  every 5 E J. 

number of roo t s  of (5-3) with p o s i t i v e  imaginary p a r t  is constant  

(say m ) ,  f o r  every E E 3 ,  

t ive  imaginary p a r t  is constant  ( k l s  f o r  every 5 E J, 

t h i s  statement is by cont rad ic t ion ,  

unequal, such t h a t  the  number of roo t s  with p o s i t i v e  imaginary p a r t  of 

Since J i s  connected, the 

S imi la r ly ,  t he  number of roo t s  with nega- 

The proof of 

Aersume there  e x i s t s  51' 52 F 3, 

is not  equal t o  the  n er of roo t s  wi o s f t i v e  i m ~ ~ i ~ a r y  p a r t  of 
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ere are no real 

eref ore 

Ram QO the number of roots of A ( x ~ - ~ + T C @ )  with i m a g i ~ a r ~  pare c 0 - the number of roots of A (xe5-rSW) with imaginary part: e 0 

= the number of roots of A (xe5i--rS9) with imaginar~ pare > 0 

QO m ,  

The next to  l a s t  step follows since 

where T ~ ( E )  are the roots with negatfve imaginary part, and 

part, ~ e n c @ ~  we 

n R = an, and 

ca 

by co 
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is said to be  ~ ~ o ~ ~ ~ l ~  e l l  c (or sa t i s f i e s  the roo 

(i) A(x,D) is e l l  c (  for a l l  points x i n  R, and 

(ii) for eve and for every E ,  5 8  E R ~ ,  linearly 

i n d e p ~ n d ~ ~ t  tho olynamials Ao(xb E++5' )  of the can- 

e exactly m roota with positive 

c 

e) for all x 
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operator 'a 

( i )  Xf A ( x ~ D )  1. 

el l ipt ic ,  

or i f  n = 2 and the ~ ~ ~ f f i c i @ n t ~ ~  a,( 

e i f  and only f f  A(x,D) is pr 

- %?roofs The proof Qf ( lows the proof of theorem 5 e l . e l e  

(ii) is also a c Q n ~ @ ~ ~ e ~ e ~  of ~~e~~~ S e l e l ,  since 

4 4 4 a 2 2 
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e above theorem 

5 e 2 e  

Theorem 5ale3, 

be a strongly e l l i  tic partial  d ~ € f e ~ e ~ t ~ a ~  operator, 

x E Q and for 

Then €or e 

i n  the c ~ p l e x  vari f @  
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tr0 p t i c  and X 0 

Therefore ou irst a s ~ e r t i o n  roof now f o l l  

d i r e c t l y  as proof i n  theor 

continuously on e o  and the  number of zeros of (-l)mAo(x, E+T~') + X is 
a constant ,  

with pos i t i ve  imagi 

with negative imaginary pa r t  is a constant,  a-m, u t i l i z e s  the  f a c t  

t h a t  there  are no retab zero 

@l, s i n c e  the  roo t s ,  r i ( C ) ,  de 

The proof t h a t  the  number of roots  of (-l)mAo(x, E+T&') + X 
t is a constant ,  m, and the  number of roots 

qed 

Remark 5,1,5, I lac ing  the  appropr ia te  rest i e t i o n e  on t h  

condi t ions,  Bee section 5.21, t is n @ e ~ s ~ ~ ~  t h a t  the  

~ ( x * D ~ ,  scat the condi t ion  

l e  T 
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The 

Hence, we can 

part, or A(x,D 
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Remark 5,1,6, Friedman sh ed i n  [I13 that i f  A( 
a -  

PO n, since apa(x) E C ( Q ) ,  then 6, 

CZSI be taken 

Now we w i l l  giv on of the f o  
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where n ie a 

tfal in the solving of the above probl 

If A(x,D) 1. 

tor of order &I defined in the dmai 



72 

poob l e m  

with the general bounda 

& an 

where the operator t i s f y  much  weak@^ condi han t ha t  for 

solving the D i ~ i ~ h  et problem, It  i s  only nec@ssary tha 

properly e l l i p t i c ,  and B (x~D1 be a 1 setv  and s a t i s f y  the j 

c o n d ~ ~ ~ ~ ~ ' ~  which are defined i n  sect ion e 

sufficiency of S c h e ~ E a ~ ~  is  proved by u t i l i z ing  the € o ~ l ~ m  

of Q 5 CO 

p1 & c (n) O D -  
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with  the boundary cond 

where the B are linear, bounda differential operators, i ~ ~ ~ p @ n d ~ ~ t  

of time t, f i 

space, and $2 i I t  i s  w e l l  known 

even ip the c l  

j 
nlinear function defined on the appropr ate funct~on 

@D) -A in Q R , 
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1 

0 ,  i t  must be 

h where Cp is a funetio 

D 4 on an, which can be defined i n  the c las s i ca l  

defined in zs BO that yo(D 4) is the trace of 

e or i n  the B e  h 

of the 'trace theorem', see theorem 3,45,4, 

We w i l l  now give equivalen definit ions of what w e  mean b 

noma1 system of boundary operators which are found i n  Friedman i n  [1%], 

and Lions and Magenes [18], 

ial 0 

the c 

fk 
Q 
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{B defined J j=o 

E an, and for every 6' ts 0, norma 

X'  

c 

The proof that  these two  f fin it ions are @quivalen~ fs seen by 

expanded €om, and noting that the rewriting B 

highest order coeff ic ient  

(xes 4- ~ 6 ' )  i n  i t  3 0  

Therefore, s ince 6' i a1 to as2 a t  X (  c (x) 0 i f  and only i f  J 

which c ~ ~ l @ t @ ~  the 

Gerd Grebb f 

5.22, 

P 
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ion g a ~ g e n ~  t o  an, of orde 

The system of boundary o ~ @ ~ a t o r s  (B 

-1 
3 ( i i )  the functio nveraes, b (x) such that 

be' E C"(W), 
j 

where b ( x )  are the fu c t i o m  i n  (5 -8) ,  J 
B is a normal system means that the order 
j 

dis t inc t ,  and there are no purely tangential derivatives 

An example of a normal ~ y s t ~  of boundary operators is the fol l .  

and is found i n  Frie an Ell]. L e t  v be a nonta 

varying airect ion on an ana I.@ 

) 3. lowar order ~ f f e ~ @ ~ t i a ~  b o ~ n d ~ r y  ope 
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normal to  an a t  xB and E 0 b e  any real  vector i n  the ta 

are l inearly independe t modulo the polynomial 

+ where ~ ~ ( 6 )  are the S+T&') with posit ive imag 

e Ao(x~ E + ~ E ' )  has xn root 

We w i l l  now give a ranger condition than the one above on 

the boundary o ~ e ~ ~ ~ o ~ $ ~  which i e  found i on l] and Friedman 

R(XIC-(-A)) H, where: A 
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st; + TSB) + X 
X has m root  

t~ORgly  @ l l i ~ t ~ C ~  

then from theorem 5 @ l e 3 ,  A(x,B) s a t i s f i e s  the  condi t ion tha t  

(x,S i= T&') C X has tll root  
0 

help  c l a r i f y  the  d e f i n i t i o n  of t h e  complementary condi t ion w e  w i l l  

def ine  what w e  mean by a f i n i t e  number of polynomials being l i n e a r l y  

independent modulo another po lynmia l ,  

Def in i t ion  5,21,6, L e t  { P o ( ~ ) #  P,(T), r o o 9  P (T)) be m m - l  
m-X 

polynomials i n  T #  We say t h  

modulo the  polynomial Q ( T )  i f  t he  system of remainders {r (T)) 

l i n e a r l y  i R d e ~ e n d e ~  , where P (T) is t h e  polynomial remaimde 

dividing Pj(') by Q ( T ) @  or  

{Pj (T) ljm0 is l i n e a r l y  indepe 
m-l 

j P O  
i 

j 

he e 
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t h e  D lee  bo 

m, Therefore, a a j  
,I)) = ( ) and the  order  

example 5,21.1, these  bounda are l i n e a r l y  inde 

therefore ,  s a t i s f y  the  c 

I n  a d d i t ~ o ~  t o  the  above a s ~ p t ~ o n s  on B (x,D), w e  
j 

e t h a t  t h e  order  Of B j ( X , D ) ,  mj 2 

orders  of B (x,D) < t he  order  of A(x,3), 

1, OK e ~ ~ i v a l e n t l y ~  

j 

e b o n g  the  system of boundary opera tors  wh 

see (5-9), with r e spec t  t o  any 

t o r  A(x,D)  is t h e  D i r i c h l e t  system 

m-l er, the  c o e f f i c i e n t s  are a 
_I_ proof, ( ) j  

C"(aQ), and mj = j -P 2m-l, The ormal on aS2, Indeed, 

t he  orders ,  m = j, are d i s  i n c t c  Also, t hese  boundary opera tors  a 

of t h e  form (5-81, with  no t a ~ ~ e n t i ~ l  d @ ~ i v a ~ i ~ e r s *  I n  o the r  w ~ ~ d ~ ,  

j 

t h e  h ighes t  ordered t e  al, and the re fo r  i s f  iers 

i t j lon 5,2le3@ 

iables , ,  t h e  bou dary operator  

bo of 
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T h ~ ~ ~  i t  carp seen t h a t  

Since,  the  orde mp and t h e  orders  of B*(x,5 + TF') 6 m, 3 
then the remaindera r (T) - T j 
l i n e a r l y  independent, a t i s f i e s  the stro 

Hence, the  system {TosTp.emgTm~l) i a  3 

Martin Schechter i n  [28) gives the  following example of a 

normal system of boundary operators  which does not s a t i s f y  t h e  s t r o  

complementary condi t ion with respec t  t o  a properly e l l i p t i c  operato 

A(x,D)m L e t  A(x,D) be the  fou r th  order operator  corresponding t o  t he  

c h a r a c t e r i s t i c  polynomial 

i n  two d ~ ~ n ~ i o n a ~  where 0 c e c 

defined a s  f o l l a s a ,  

e L e t  t h e  boundary operators  be 

the h y p o t ~ ~ s  i 
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n R", n > 2, w - 
an E c", such tha 

one s i d e  of an ( e c t i o n  3 , 4 3 ) ,  

(ii) The operator  rongly e l l i p t i c  i n  E, 
0 0 -  has coef f i ~ i e n t s  aa(x) E C ( a )  

2 m e  (5 -9)  

and is of o 

(iii) The opera tors  B (x,D) are m i n  n ~ b e r ,  with 

c o e f f i c i e n t s  b 

dent of t i m e  to  

{BSIjmo is a normal system on an and s a t i s f i e s  

c ~ ~ l @ ~ e ~ t a ~  condi t ion,  

J 

jh (x) E C"(an), and are indepen- 

m-1 
(iv) 

o f  B (x,D), m e &I=-1 (0 e j e m-l)B - -  3 3 -  

I n  order  t o  v e r i f y  the  strong complementary condi t ion for t h e  

system ( A ( x ~ ~ ) , { B ~ ~ , ~ ) ,  w e  u t i l i z e  d e f i n i t  on 5.21,5, which is q u i t e  

cumbersome and d i f f i c u l t  t o  use i ts  present  f o  s i n c e  t h e  V ~ C ~ O K B  

en 

~ o c @ d u r e  uaed d Mag 

e 

s of c 
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\ 

8 a d i f f e ~ o ~ ~ h i  

8 g p  defined a 

ei mapa Ui onto the sphere a { 

a9 that the 

€pi" n) = a+ = Ix@ E Rn I x w  E a, x, > 0) 

See figure 3 , 4 ,  

Now, for any point x E an, w e  know that there ex i s t s  a 
0 

fixed integer i ,  12 i 2 N, such that xo E Ui,  and we can define the 

diffeomorphism eie  which depend on xoS such that xo is tranafo 

into xot 

transformed into the operator $70 (xVoD) defined by 

(Oee..aO)b and for any x E a n n  Ui the operator A(x,D) is  

(5-10) 
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and M ~ g ~ n ~ ~  [ 181 and Peetra [ 26) 

he propkrty of 

a 

Hence, after the tran 

omed into the operato 

which in urn depends on 

ion of d@finition 5,21,5, 

e A l  M 4 
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usual way the ~ t ~ ~ n ~  c condition i sver i f i ed  t h i s  can be 

seen, since 8 more explicitly w ~ i t t ~ ~  in 

tion than in d ~ f i ~ ~ ~ i o ~  5,21,5 where 5 and 5' are no 

defined, In order 

E an, we w m   OW 
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3*4*  

1 

x = x h - X h  where 1 h 2 n (5-14) fa 

(id) rotation, e : 
$2 

n 
Q 
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(5-16) 

he o r i g i n  and d i g  

of the  tangent hype 

Def in i t ion  5.22,l is the  usual  procedure used t o  v e r i f y  t h e  

s t rong complemen c o ~ d i t i o n ~  But t h e  problem occurs ghat t he  

transformation, e j e  dep@nds on x c an, a d w e  must v e r i f y  t h e  s 

c ~ p 1 @ ~ e n t a ~  condi t ion f o r  eve x E  ever* the re  are certa 

condi t ions which w i l l  allow us t o  say t h a t  i f  we can v e r i f y  t h e  st 

complementary condi ion for only one ~ o i n t  x c aQ, then t h e  stro 

c ~ p l ~ m ~ n t a ~ ~  ~ o n d ~ t i o ~  will hold f o  every poine o 

condi t ions needed are t h a t  t he  c o e f f i c i e n t s  a ~ ( x ) ~  bjh(x) be co 

and 

i t h  

of th 

9 
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operator  

is transformed i n t o  the  system (&(xV *D) * {  3 1)  with p r i n c i p a l  p a r r s  
j 

(5-18) 

Before giving the  equivalent  d e f i n i t i o n  of t he  s t rong  cmple-  

mentary condi t ion,  w e  w i l l  d i scuss  more fully t h e  transformation 

Bi = 8 e 0  e 8  and show t h a t  under t h e  conditione of def 
i3 i2 il 

5,22,2 we have ~ n ~ a r i ~ n c e  of t he  sys  em (A~x$D1 ${Bj)) with respec t  t o  

ei, i n  t he  sense t h a t  after the r ~ n ~ f o ~ a t i o n  eiS t he  sytem 

,D)@(B }) defiqed i n  (5-17) is  t r ans  3 
( J t ( X g D )  s( 8 , ) )  
the  p ~ ~ n c i p ~ l  pa r t e  

(5-18), t h a t  i e ,  

B B 
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L e t  X E 30, be arbit 

(5-19) 

amd fixed, and def i  
2 

which clearly s a t i s f i e s  the conditions of o r ~ h o g o ~ a l ~ t y ~  From 

chain rule for partial  differentiation w e  obtain 

and after the t ~ a m ~ f o ~ ~ ~ i o n  8 1  , 
2 

Since ap + a2 f 0 ,  e readily see, i n  g & n @ ~ ~ 1 ~  that a sy 

with respect t o  8 
& 

or an ex 
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We need the  following lemae 

Biek the  pofnt X E 30, a and l e t  Oi 

be t h e  transformation defined by (5-14), (5-15) and (S-lg), L e t  us 

assume w e  have already transformed X E an by 6 e 0  such t h a t  
1 2  i1 

X = (0, 

t h a t  t h e  system (W(x,D),bBj)) has constant  c o e f f i c i e n t s ,  

every nonaegative in t ege r  m 2 t h e  order  of A(x,D), a f t e r  t h e  t rensfor-  

mation Bi 

a @O)  and the  tangent hyperplane t o  an  a t  X is  xn = 0, Assme 

Then, fop 

defined i n  (5-16) w e  ob ta in  
3 

am 
-4- (== ) , , e  (- (lower order  term 

0 and 

c 



90 

Assume the equation i s  t ue for the case k = ms and prove true for m d. 1 

1 am+l a er- 

ax ax ... axj 
ax J&l axJl*eeaxJ m jm+, J l  m 
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1 
(lower order terms), a 

ax, 
(- )~ 

Hence, we have proved the result by inducrio 

ed 

arianee of the g s t m  (A(x,I)) ,{B 1) with respect t o  ei* 
j 

, L e t  us c o ~ s ~ d e  ,I)) ,{Bj]) Such 
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or, e ~ ~ i v a l e n t l y ~  the system ( ~ ~ x ~ D )  ,{Bj 1) is  invariant with respect 

to 0 i "  

Proof, Since, a f ter  the transfo ation ei .e a t  
2 5) - 

X" = (O,.o.,O)) x: = 0 is the tangent hyperplane, then ( 0 ,  D 0 0 BO) 

0 for 12 k 2 n, Hence, from lemma 5.22 .1 ,  w e  have at  X" = (Oso..,O) 

+ (lower order terms). am am .I 

ax e r e a x  ax) , , ,ax)  
j, jnl  J1 3m 

We can then see that, for any X G as1, after  the transformation BiD 
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J 

Remark 5e22a2e We can 

qed 

see from this theorem and d e f i n i t i o n  

5.22,1, t h a t  i f  w e  have the  s t rong  complementary condi t ion holding f o r  

only one poin t  X E aa, and i f  t h e  system s a t i s f i e s  t he  hypothesis of 

theorem 5e22e1, then the  s t rong  camplementary condi t ion f o r  {B 1 

must hold f o r  every poin t  

l e n t  def i f i i t ion  of t he  s t rong  complementary condi t ion,  

m-1 
J j = O  

E 20, This proves the  following equiva- 

Theorem 5.22e2e L e t  us consider  the system (A(x,D),{Bj)) 

defined as i n  theorem 5e22e1, where A(x,D)  is  s t rongly  e l l i p t i c ,  t he  

c o e f f i c i e n t s  are constant  and the  system is inva r i an t  with r e spec t  t o  

e t  e po in t  x E an BU 

tangent hyperplane a t  X is  p a r a l l e l  t o  xn = 0 ,  and the  n 

t o  an a t  X is  p a r a l l e l  t o  the xn- 

Since aa E C", we cam consider  
2 

{BJ1;zi satisdies t h e  s t rong  

n t a ry  condi t ion i o r  every X > 0, l e t t i n g  

c 9  = ~ O ~ ~ ~ * ~ O ~ l )  be ,  
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e a ~ 1 ~  independent modu 

m 

Reinaxk 5,22,3, Now w e  can see t h a t  i f  t he  given system 

(A(x,D),{B 1 )  s a t i s f i e s  t h e  h y p o t h e s i ~  of theorem 5.22,1, then i t  

s u f f i c e s  t o  v e r i f y  the  s t rong  complementary condi t ion a t  one po in t  

X E as2, i n  order  t o  have the  boundary opera tors  { B j l  s a t i s f y  the  s t rong  

j 

condi t ion f o r  every poin t  on t h e  boundaryo I f  the 

syetem does not s a t i s f y  the  hypothesi  of t he  theor , then w e  must go 

back t o  d e f i n i t i o n  5,22,1 and use the  transformation Oj je  f o r  eve 
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the  equivalemt d e f i  ebb [I21 and 

d e f i n i t i o n  5,21,3, 

$ I w i l l  g ive an ex 

respec t  eo eie 

e Let us cons-ider the operator  

where A is the Laplacian operator  

We assert t h a t  f o r  every pos i t i ve  In teger  k, the  operator  is i nva r i an t  

with respec t  t o  the  tranafonnation, e iO 

- Proof. It s u f f i c e s  t o  prove t h a t  t h i s  operator  v e r i f i e s  t he  

is of theorem 5*22,1, F i r s t ,  we  see the  c o e f f i c i e n t s  are con- 

s t a n t e  We will plow show i ~ v a r i a n e  with res t o  

2 

t on an, and 
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e t  k = 1, than fs 

and from the def 

Assume that for k 



Hence, we have proved the  a 

5,23, General Bound 

In t he  s tudy of t he  s t a b i l i t y  rheory of certain e l l i p t i c  

p a r t i a l  d i f f e r e n t i a l  equations 

where u(x, t )  acts on Qx[O,") and 9, 

n - 1, 

n > 2, 

d i f f e r e n t i a l  opera tors  with genera l  boundary condi t ions,  and i n  t h i s  

s ec t ion ,  we g ive  the  following hypothe is on t h e  system (A(x,D),{B 1). 

RnB w e  need t o  consider  t he  case 

I n  the  previous sec t ions  w e  discussed only the  case $2 C RnB 

For t h e  one dimensional case, n = 1, we need t o  d iscuss  l i n e a r  - 

3 

e bou o 

(5-20) 
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s a t i s f y i n g  the  boundary condi 

+ We g ive  the  follow ng condi t ion on (a(x, 2- ),{B~~~{B;]) 
ax 

(i) ak(x) are cam lex-valued, measurable and bounded on 

[a,b] ( 1  e k e 2m), and ao(x) is  continuous on [a,b 

A(x, s) is s t rongly  e l l i p t i c  on [a,b],  t h a t  is, 

f o r  every x E [a ,b] ,  

- -  
a 

(ii) 

) d  (0 2 j 5 m-l)  are l i n e a r  
+ a  a (iii) Bj( ) I  ";' 

i a l  opera tors  with constant  c o e f f i c i e n t s  

e 2m-I, and axe inde- .I) of respec t ive  orders  m' jS mJ - 

are l i n e a r l y  independent, 
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(0 e j m-l)a - -  

o those for n 2 2,  

L e t  us define 

a If A(x, - ) is s ~ ~ o n g l y  e l l i p t i c  on [a,b], w e  have the following 

results : 
ax 

( i )  6: is  e l l i p t i c ,  and is  properly e l l i p t i c  on 

C B - ) ~ ~ ' ,  sat isfy 
+. m-1 

( i i )  1: and the boundary system {B 1 
j j = o s  j j=o 

the strong eamplementary condition on x = b, x = a, 

r @ a p e c ~ i ~ e l y ~  
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6,0, STABILI OF SOLIJTIONS TO THE GENERAL 

BOUND UE PROBLEM: + A(x,D)u(x,t) = f (u) 

Many engineering and phys ica l  problems can be formulated  as^ an 

init ial-boundary value problem f o r  a p a r t i a l  d i f f e r e n t i a l  equation. 

chapter ,  w e  w i l l  be  considering the  following n o n i i ~ e a r  

problem which has many phys ica l  appl ica t ions  

I n  t h  

nit ial-boundary va lue  

auO + A(x,D)u(x,t) = f (u) XES2 3 t20 (6-1) a t  

with the  general  boundary condi t ions 

B <x,D)u(x,t) = 0 
j 

xsX2, t > O  (OLJlm-1) (6-2) - 

and the  i n i t i a l  condi t ion 

where u is a vec tor  valued funct ion,  such t h a t  €or  every 220, u ( x , t )  is 

i n  some Hi lber t  space,  A(x,D) is  a l i n e a r  p a r t i a l  d i f f e r e n t i a l  operatos 

f is  a nonl inear  func t ion  def ined on some prescr ibed funct ion space,  

uf f i c i e n t  condi t ions ill be given on t h e  system (A(x ,D) , {B  } , a )  
j 

t h e  nonl inear  func t ion ,  f ( u ) ,  to ensure the  ex is tence ,  uniqueness and 

f a s o l u t i o n  t o  the  above p a r t i a l  d i f f e r e n t i a l  equation. This 

is done by considering t h e  extension of A(x,D) t o  an abs t  c t  (unbounded) 

l i n e a r  operator  A defined on some base Hi lbe r t  spacep H, d considering 

ce operator  evoPution 

9 Au($) = f ( u )  d t  

u(0) .Ea u 
0 



102 

and u t i l i z i n g  the  r e s u l t s  from Pa0 [23] on the  s t  

evolut ion equat ion t o  ensure t h e  s o l u t i o n  of the 

i t y  cri teria f o r  t h e  

i l i ' t y  problem for 

6-1) and (6-2). If f u) 5 0, then the  a b s t r a c t  opera tor  equation 

becomes 

-4- Au(t) = 0 d t  

I n  t h i s  chapter ,  w e  will consider t h e  problem (6-1) and (6-2), 

f o r  t he  cases where f ( u )  E 0, and f ( u )  is a nonzero nonl inear  func t ion  

given i n  some func t ion  space,  and nCRn,n~l.  W e  w i l l  also show t h a t  t hese  

r e s u l t s  genera l ize  the  case f o r  t h e  Di r t ch le t  problem worked o u t  by Buis 

2 [ 7 1 *  

The extension t o  the  complex space can r ead i ly  be done. 

Most of t h i s  discussion is  r e s t r i c t e d  t o  the  real Hi lber t  space L (9). 

6 1 Pre l iminar ies  

I n  sec t ions  6.2 and 6.3 w e  will examine t h e  init ial-boundary 

value problem given i n  (6-1) with f ( u )  E 0, or  

with genera l  boundary condi t ions 

In order to  i'ty problem fo r  (6 

results of P 
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a b s t r a c t  operator  equat ion (6-3 

extension of A(x,D)  defined i n  l b e r t  space,  M 2 L ($2) such 

t h a t  D(A) is dense in H 

r e s u l t s  and o the r s  needed i n  o r  

is t h e  a b s t r a c t  ope 

2 

is sec t ion ,  w e  w i l l  g ive  these  

e t h e  s t a b i l i t y  problem f o r  ( 6 - 4 ) ,  

F i r s t ,  w e  m u s t  def ine  what is m e  t by a so lu t ion  of t h e  

operator  evolu t ion  e q ~ a t i o n  (6-3) 

Def in i t ion  6,1,1. u(t )  is a so on o f  t he  equat ion (6-3) 

with i n i t i a l  condi t ion u(0) = uo&D(A) i f :  

( i )  u ( t )  is uniformly continuous in t ,  f o r  every t20, with 

( i i )  u (~)ED(A) ,  f o r  every t>O, and Au(t) is continuous i n  t ;  

f o r  every t20; 

(iii) t h e  de r iva t ive  of u(t exis ts  ( in  the  s t rong  topology) 

f o r  every t ~ 0  and equals -Au(t) 

Def in i t ion  6.1.2. An equi l ibr ium s o l u t i o n  of 46-3) is a s o l u t i o n  

u ( t )  of (6-3) such t h a t  

The following lemma proved i n  [ 2 9  is  very use fu l  i n  e s t ab l i sh -  
I 

ing the  s u f f i c i e n t  condiitioas for t h e  ex is tence  d s t a b i l i t y  of t he  

e r a t o r  evolut  

(R.S,Phillips) L e t  A be a l i n e a r  opera tor  with 

both contained n the  Hi lbe r t  apace H 

semi-group of class (C 1 i n  
0 

y Pao i n  1231 zes lemma Q.%.lpl 
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b a s i s  fo r  our examination of t h e  s t a b i l i t y  probl  

equat ion ( 6 - 4 ) ,  gao's no ta  OR has  been ch r e s u l t s  could 

be used i n  the  present  cont 

Lemma 6.1.2. (Pao) L e t  A be a l i n  ar operator  with domain 

D(A) and range, R(A) both contained in the Hi lbe r t  space B and D(A) is 

dense i n  H and R(1-(-A))= H, I f  A s a t i s f i e s  t h e  following inequa l i ty ,  

t he re  e x i s t s  a constant  BLO such t h a t  f o r  every ucD(A) 

where e is  the  inne r  product equivalent  t o  the  one defined on H, then 

f o r  every i n i t i a l  element u cD(A), t he re  exists a unique so lu t ion ,  u ( t ) ,  
0 

of (6-3) such t h a t  u(0) * u and 
0 

( i )  Any unperturbed s o l u t i o n  is asymptot ical ly  s t a b l e  i f  B>O 

and is s t a b l e  if 610. 

( i i )  A s t a b i l i t y  region is D(A) which can be  extended t o  

the  whole space H. 

(iv) If (&D(A) and A@) = 0, then 0 is an equi l ibr ium so lu t ion ,  

c a l l e d  t h e  n u l l  so lu t ion ,  

The b a s i c  c o n d i t ~ o n ~  needed t o  so e t h e  s t a b i l i t y  problem of 

(6-4) is d i s s i p  t i v i t y  of -A H. To prove the  second p a r t  

w e  need t o  use the  next  two r e s u l t s  by Friedman [ l l ]  and Komura [161, 

respec t ive ly ,  

xf (A(x,D),IB I & )  is t h e  syetem 

(i)-(v) in (5-91, d A is the oper 

t h e r  ts 
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2 R(XI - (-A)) = L (a) .  

Lemma 6,1,4, (Komura) I f  A is  the  operator  defined i n  

l e m m a  6.1.3 and -A is d i s s i p a t i v e ,  and the re  exists a constant  01 > 0 

2 such t h a t  R ( a I  - (-A)) = L ( a ) ,  then f o r  every CY 0 

2 R(011 - (-AX 1~ L (a ) ,  

6.2. S t a b i l i t y  of t he  Solu t ion  of a Linear 

Initial-Boundary Value Problem f o r  t h e  Case n 2 2 

I n  t h i s  s ec t ion ,  w e  w i l l  g ive  s u f f i c i e n t  condi t ions t o  ensure 

t h e  exis tence,  uniqueness and asymptotic s t a b i l i t y  or s t a b i l i t y  of t h e  

equi l ibr ium so lu t ion  t o  the  general  boundary value? problem defined below 

i n  (6-5). 

L e t  us consider t h e  following ini t ia l -boundary va lue  problem, 

au x t 
a t  + A(x,D)u(x,t) = 0 xdl t3p 

where A ( x , D ) , B  (xeD) ar r t ia l  d i ~ f @ ~ @ n t  s defined by 
j 

(6-7) 
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0 

There e x i s t s  constant  820, such t h a t  f o r  every u ~ C ~ ( s 1 )  

2 
(U,-A(X,D)U)~ 5 -81 I U I  I o *  (6 -9 )  

2 F i r s t ,  l e t  us def ine  H E L (Q), where th&s d iscuss ion  is 

r e s t r i c t e d  t o  t h e  real Hi lber t  space,  L (Q). 2 L e t  us now de f ine  the  a b s t r a c t  

Then, T is a l i n e a r  operator  
0 

C:(Q)CCi(Q)cL 2 (Q) and w e  know 

L2 (n) . 

such 

from 

t h a t  D(To) ' is dense i n  L2(Q) s ince  

Dunford-Schwartz [ 9 ] ,  C:(Q) i e  dense i n  

L e t  us now def ine  t h e  a b s t r a c t  operator  A,  

D(A) = H F ( Q )  

a and Au is t h e  func t ion  i n  L (Q) defined by 

Since A(x,D) i s  l i n e a r ,  we see t h a t  A is a l i n e a r  operator.  We w i l l  show 

2 h a t  A is  t h e  smallest closed l i n e a r  extension of T i n  L (Q), wher@ w e  
0 

2 have def ined HZ L (a) .  

We then ob ta in  the  following evolut ion equation 
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where u ( t )  is a vector  valued func t ion  def ined on EO,-) 

2 2 L (a ) .  Thus, f o r  each t20, u can be regarded as a funct ion  u ( x 9 t ) c t  ( 6 2 ) .  

A is t h e  l i n e a r  unbounded operator  with domain and range both contained in 
2 L (a) ,  defined by (6-9). 

We must def ine  what is meant by a s o l u t i o n  t o  equ 

which is found i n  Friedman i n  [ll]. 

Def in i t ion  6.2.1. u (x , t )  is a general ized so lu t ion  of (6-5) 

i f  u ( t )  is a so lu t ion  of (6-10) i n  t h e  sense of d e f i n i t i o n  6.1.1. 

Def in i t ion  6.2.2. u (x , t )  s a t i s f i e s  t h e  boundary condi t ion 

2m i n  a general ized sense i f  f o r  each t20,  u(x, t ) E H B  (62) 

We w i l l  need the  following two very important i n e q u a l i t i e s  i n  

order t o  prove t h a t  A is  a closed operator.  The f i r s t  i nequa l i ty  is found 

i n  [ l l ] ,  and the  second shows t h a t  A is a bounded operator  on its domain, 

Lemma 6.2.1. (Friedman) I f  t h e  system (G(x,D),(B IpQ) 3 
s a t i s f i e s  ( 5 - 9 ) ,  then the re  exists a constant  C > 0, such t h a t  f o r  every 

0 

Lemma 6.2.2, If t he  operator  A is  def ined as i n  (6 -9 ) ,  then 

the re  e x i s t s  a constant  C > 0, such t h a t  f o r  every u&D(A) 1 

Proof. F i r s t p  I must 
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This is t r u e  

I 

< - 

= 

from f a c t  t h a t  for a,b>O, 2 2 a b ~ a  2 + b and 

2 2 2 2 
u + VI  I, L r l  I 4  I, + I Ivl 0 1  = I UI I, + 21 IUI 1,l I J I  I, + I Ivl I, 

I I4 I o  + (I IUI I, + I Ivl I,) + I lvl I, 2 2 2 2 

I f  w e  l e t  Co = max I aa(x) I , then f o r  some i n t e g e r  k independent of u ,  w e  
I a I 9  
X E E  

have f o r  every UED(A) 

I I 4  I, 2 = I I A ( x d h l  I, 2 = I I 4a122m q x ) D  a 2  UI I, 

2 - 2k IIalZFm I Iaa(x)DauI I, 

- 2 co llalz2m 
k 2  

We w i l l  now prove t h a t  A is the  smallest closed l i n e a r  

2 extension of To i n  L ( a ) ,  

Lemma 6-2.3, e operator  A defined i n  (6-9) is  a closed 

Proof We m u s t  sh t h a t  i f  t he re  e x i s t s  a sequence u ED(A) i 

such that 
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2m then u&D(A) and Au = wo F i r s t ,  w e  w i l l  show the re  e x i s t s  v&H ( a ) ,  such 

t h a t  

v as i + Q). 
Hh<Q) 

U 

2 Indeed, let  us consider u - u ED(A), We know, s i n c e  u converges i n  L (Q), i j  i 

From lemma 6.2.1, t he re  e x i s t s  a constant C such t h a t  
0' 

2 2 Since u converges i n  L (Q) and Aui converges i n  L (Q), t h e  r i g h t  s i d e  i 

converges t o  0 as i, j -f 00- Hence, 

as i , j  + Q) . 

Since H2m(Q) is complete and w e  have Cauchy convergence, t h i s  implies 

t he re  e x i s t s  a ~ C H , ~ ( Q )  such t h a t  

2m We w i l l  now show UED(A) = HB (52). 

e x i s t s  a sequence un&C (0) such tha  

To see t h i s ,  w e  need t o  show the re  
a0 

B 

u as n + -.a 

un H2<0) 

Indeed, w e  have t he  ZolP n e q w l i t y ,  s i n c e  the  i d e n t i t y  i n j e c t i o n  f 
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I I 4  I, L I Iu-uil I o  + I Iu,-vl I o  L I lu-u i o  I I + c2l I.,-vl 1,. 

W e  have proved t h a t  t he  right-hand s i d e  converges t o  zero9  as i -3 Q), 

2m Therefore,  u = VEH ( Q ) ,  which impl ies  

I Iu,-uI I 2m = I I.,-vl I 2m "I 0 a s i - t m  
R 

Where uiED(A). 

such t h a t  I I ui-uI I 2m 
L e t  us p ick ,  a r b i t r a r i l y ,  E > 0. There exists a u ED(A), i 

E - 
2" By d e f i n i t i o n  of D(A) = H P ( Q ) ,  t h e r e  e x i s t s  

Therefore,  

- UI I, L I Iun(i) - u  i I I un (i) 

2m 2 This shows t h a t  LED (A) - HB (Q) a 

Indeed, let  us consider u - UE:D(A), From lemma 6.2.2, 

F i n a l l y ,  w e  m u s t  show Au - waL ($2). 

i 

Since t h e  r i g h t  hand s i d e  conve s i -3 w e  see 

From t h e  inequa l i ty  

i t  follows t h a t  Au = w 
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2 
qed 

Lemma 6,2.4, A is the  smallest c losed ear extension of T 

operator  i n  L (Sa), 

0 
2 i n  L (Sa), 

2 
Proof, 

t h e  smallest extension of T 

By the  d e f i n i t i o n  of t h e  extension of To i n  L (Sa), A is 
2 

i n  L (0) if and only i f  the  domain of A,D(A) 
0 

2 
is t h e  set of a l l  UEL (Sa) such t h a t  t he re  e x i s t s  a sequence u ED(T i o  

t h a t  

2 Since A is a closed extension of To i n  L (Sa) ,  it is  obvious t h a t  A 

contains  t h e  smallest closed extension of To i n  L (Q), 

s u f f i c e s  

such t h a t  

2 Therefore, i t  

t o  show t h a t  f o r  any UED(A), t he re  ex i s t s  a sequence uicD(To), 

2m 2m To prove t h i s ,  l e t  wD(A) = HB (Sa). Then, by d e f i n i t i o n  of HB (Sa) ,  
m 

t he re  e x i s t s  a sequence u EC (Sa) = D(To) such t h a t  I Iui - U I  " 0  i B  
as i + m, But w e  know, s i n c e  ui - u&D(A) from lenuna 6,2. 2t 

Therefore, 

0 ;tl O 

2m 2 
t he  i d e n t i t y  from H (Sa) t o  L (sa) is continuous 
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and w e  have t h e  f o l l  ing  inequa l i ty  

Since uihD(To)gD(A) Toui = Au Hence, w e  have t h  io 

- ~ l ! ~  0 and llToui - Aul I o  0 as i j. Q) 

R R 

and t h i s  shows t h a t  A is  the  smallest closed l i n e a r  extension of To i n  

L2 (n) . 
Now w e  w i l l  prove t h e  f a c t s  needed t o  use Lemma 6.1.2, namely 

t h e  d i s s i p a t i v i t y  of -A, and the  f a c t  that R(I-(-A)) 13, 
2 Lemma 6.2,5, For t h e  closure,  A, of To i n  L ( a ) ,  - A is  

s t r i c t l y  d i s s i p a t i v e  wi th  respec t  t o  the  L - norm i f  k3 > 0, and i s  2 

d i s s i p a t i v e  i f  f3 = 0. 

Proof. From the  hypothesis (6-71, w e  see t h a t  t he re  e x i s t s  a 

B constant  f3 0, such t h a t  f o r  any uhCm(Q) = D(To) 

2m Since D(T ) is dense i n  D ( A ) ,  we know t h a t  f o r  any ucHB ( 5 2 )  5 D(A) 

e x i s t s  a sequence u eD(To) such t h a t  

t he re  
0 

i 

We m u s t  now prove t h  

'Eo show this, we u t i 1  the following two leneqca 
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This shows us t h a t  

Due t o  t h e  cont inui ty  of t h e  inner  product, w e  have proved t h a t  

Since u&D(A) u ED(T )cD(A)  and Aui T u i o  o i  

From t h i s  i n e q ~ l i t y ,  w e  c see t h a t  i f  $ > 0, -A is s t r i c t l y  

t ive,  and i f  $ = 0, -A is d i s s i p ~ ~ i v ~ ~  qed 

Lemma 6.2,6. A i s  a l i n e a r  operator ,  such t h a t  the  domain 

2 
D(A) and range R(A) are both contained i n  t h e  H i l b ~ r t  space L (Q) and D(A) 

i s  dense i n  L (Q) Also, R ( I  - (-A)) 2 

Proof. It m u s t  f i  noted t h a t  w e  have defined our  b 

3 L 2 (a) .  A is  a l opera tor ,  s i n c c  A (  

l i n e a r  so, i t  can re ly be seen t ha  
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2 a t  D(A) is dense i n  L (Q) follows s i n c e  B(A) 

Cm(Q)cC; ( Q ) C H F  (Q)c 2 here  C I ( Q )  is dense i n  L 2 ( a )  
0 

2 now t o  show R ( 1  - (-A)) = L (a) .  We know from lemma 6.1.3, t h a t  by t h e  

d e f i n i t i o n  of t h e  operator  A, t he re  e x i s t s  a constant  A > 0, such t h a t  

f o r  any X > 

0 

0 

2 R(A1-(-A)) L (Q), 

and s i n c e  -A i s  d i s s ipa t ive ,  we u t i l i z e  lemma 6.1.4, t o  show t h a t  f o r  any 

A ’ 0, 

2 R(A1-(-A)) = L (a ) .  

Therefore, i f  w e  l e t  X = 1, w e  have t h e  des i red  r e s u l t .  qed 

We are now ready t o  prove the  nain r e s u l t  of t h i s  sec t ion .  

Theorem 6.2.1. L e t  us consider  t he  s t rongly  e l l i p t i c  p a r t i a l  

and t h e  boundary opera tors  , { Bj}j=oa defined m- 1 d i f f e r e n t i a l  opera tor ,  A(x,D) 

by (6-6). L e t  t h e  system (A(x,D),{B 1 Q) s a t i s f y  condi t ions (5-9) and 

inequa l i ty  (6-7), I f  w e  consider t h e  ini t ia l -boundary va lue  problem 

(6-5), then f o r  any given i n i t i a l  va lue  func t ion  u ( x ) E H ~  (a), t he re  

exists a unique general ized so lu t ion ,  u (x , t ) ,  such t h a t  

j’ 

&an 
0 

2m 
(i) f o r  every ezOs u(x,t)EHB (a)  ; 

a general ized so t%on of (6-5); 

(iii) U(X,O) 3 UL (X)$ and s es the  bounda 
0 

(iv) the null so lu t ion  is s t a b l e  
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where the  a b s t r a c t  op r a t o r ,  A, is d 

and is  t h e  smallest c losed l i n e a r  extension of t h e  operator  T def ined i n  
0 

(6-8) e 

From lema 6.2.6, A is a l i n e a r  operator ,  such t h a t  t he  domain D(A) and 

range R(A) are contained i n  t h e  base  Hi lbe r t  space H 

dense i n  L ( a ) ,  and R(I-(-A))  = L (SZ). 

d i s s i p a t i v e  i f  B > 0 and i s  d i s s i p a t i v e  i f  B = 0, where B is  t h e  

d i s s i p a t i v i t y  constant  i n  (6-7)- 

i n  lemma 6.1.2, and by applying Pao's r e s u l t s ,  w e  see t h a t  f o r  every 

uo€D(A) = H$(Q), t h e r e  e x i s t s  a unique s o l u t i o n  u ( t )  of (6-10) s a t i s f y -  

ing  u(0) = u + 

a general ized s o l u t i o n  of 46-51 and f o r  every ~ 5 0  u(x, t )  €HB (Q) e This 

impl$.es, from d e f i n i t i o n  6.2.2, t h a t  u(x, t )  satisfies t h e  boundary con- 

d i t i o n s  i n  a general ized sense. 

2 

From l e m m a  6.2.5, -A is  s t r i c t l y  

L (Q) D(A) is 
2 2 

Now, we have s a t i s f i e d  the  hypothesis  

Therefore,  from d e f i n i t i o n  6.1.1, and 6.2.1, u (x , t )  i s  
0 

2m 

Since u(0) = uo, w e  see u(x,O) = uo(x) p 

2m t h e  given i n i t i a l  value func t ion  i n  HB (Q) = D(A). 

HB (Q) = D(A) and A( ) = 0, w e  see t h e  n u l l  s o l u t i o n  is s t a b l e  i f  B = 0 

(and is asymptot ical ly  s t a b l e  i f  B > 0) with respec t  t o  t h e  L 

Since u ( t )  f OE 

2m 

2 - nom. qed 

6.3. S t a b i l i t y  of t h e  Solut ion of a Linea 

Initial-Boundary Value Id f o r  t h e  Case 

I n  this sec t ion ,  w ill give  suff condi t ions t o  ensure 

ce, uniqueness d t he  s t a b i l i t y  of the n u l l  so lu t ion  t o  the  

value problem defined below POP the  case where !d=(es,b) general  bounda 

and --ao< b;l<b<me 
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L e t  us consider t h e  following nit ial-boundary va lue  problem, 

4- m-1 - m-1 and {B 1 are the  p a r t i a l  d i f f e r e n t i a l  opera tors  a 
j J = O  where A(%%/ 9 {Bi Ijm0 3 

as defined i n  A e o n  [ 11,  

(6-12) 

a 4- 
such t h a t  the  system ( A ( X , Z ) ~  {B B-1) s a t i s f i e s  the  condi t ions (5-23). 

j ’  j 
a L e t  us now def ine  the  following Hi lbe r t  spaces needed t o  extend A(x,%) 

t o  the a b s t r a c t  opera tor  A, 

H 2m [a ,b]  = {UEC 2m-1 [a ,b l l  ($-)2m-1u(x) is absolutqJy con5inuous 

d 2m 
i n  Ea,bl, and \dx) u(x)~L~[a,b]) 

We can now define t h e  a b s t r a c t  opera tor  A 

(6-14) 
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Remark 6.3.1. From Agmon El], w e  see tha t  A i s  a closed 

l i n e a r  opera tor  such t h a t  t he  spectrum i s  t h e  whole plane o r  a d i s c r e t e  

sequence of eigenvalues.  

We then obta in  the  evolut ion equation 

+ Au(t) = 0 d t  (6-15) 

where A is defined as i n  (6-14), and D(A) and 9 ( A )  are both contained 

i n  the  real Hi lbe r t  space H 

L e t  t he  operator  

there  e x i s t s  a constant  B - > 

a 
( u , - A ( x s j p o  2 

2 
E L [ a ,b ] ,  

A(x,D) s a t i s f y  t h e  following inequa l i ty  : 
0,  such t h a t  f o r  every U E H ~  [ a , b l  2m 

-B I  I 4  l2  
0 

(6-16) 

where B is ca l l ed  t h e  d i s s i p a t i v i t y  constant.  

I n  order  t o  consider  t he  s t a b i l i t y  problem f o r  t he  case n = 1, 

w e  need t h e  following lemmas8 the  f i r s t  being found i n  Agmon 

Lemma 6,3.1, Let A be the  a b s t r a c t  operator  extension of 

a a 4- 
ax j j  

A(x,-) def ined by (6-14) 

condition (5-23), Then, t he re  e x i s t s  a constant  A > O ,  such t h a t  for 

where the  system ( A ( x s z )  ,{B 3B-I) s a t i s f i e s  

0 

m y  h’Ao’ 

2 
) )  = L [a ,b] ,  

In  order to use Lemma 6,1,2 t o  solve t h e  s t a b i l i t y  problem, 

w e  must now show t h e  d f s s i p a t i v f t y  of -A, and R(1- ( -A) )  = H. 
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Lemma 6.3.2, L e t  t he  operato A be defined as i n  (6-14). The 

2 oper -A is s t r i c t l y  d i s s i p a t i v e  with respec t  t o  the  L - norm i f  

6 0, and is d i s s i p a t i v e  if B = 0, where B is  t h e  d i s s i p a t i v i t y  constant  

i n  (6-16). 

Proof. This follows r ead i ly  from t h e  d e f i n i t i o n  of A ,  and 

condi t ion (6-16), s ince  f o r  every u&D(A) a H F [ a , b l ,  

Lemma 6.3.3. The a b s t r a c t  opera tor  A i s  a l i n e a r  opera tor  

such t h a t  the  domain D(A) and range R(A) are both contained i n  the  real 

2 2 2 Hilber t  space H-L [e ,b] ,  D(A) is dense i n  L [a ,b] ,  and R(I-(-A)) = L [a,b,]. 

Proof. It can be r ead i ly  seen from t h e  d e f i n i t i o n  of A ( x , D ) ,  

t h a t  A is l i n e a r ,  and t h e  domain D(A) and range R(A) are both contained 

2 i n  L [a ,b]  

Also, D(A) * HF[a ,b ]  is dense i n  L 2 [a ,b l ,  s i n c e  Cz[a,b$HB 2m [a,bleL 2 [a,b] 

2 2 and C:[a,b] is dense i n  L [a ,b l .  

From lemma 6.3.1, and s i n c e  -A is  d i s s ipa t ive ,  from Lema 6.1e4 w e  have, 

F ina l ly ,  w e  m u s t  show R(I-(-A)) = L [a,b].  

since t h e r e  e x i s t s  a constant  A >Os such t h a t  for  every X>Ao - 
0 

2 R(h1-(-A)) = L [a,b] 

then i t  m u s t  be t r u e  t h a t  f o r  every h > 0 

This leads  us t o  our qed 

We are now ready $0 prove O W  main s t a b i l i t y  r e s u l t  f o  
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Theorem 6.3,1e L e t  us consider  t h e  s t rong ly  e l l i p t i c  Pinear 
a + m - l  m- 1 

d i f f e r e n t i a l  opera tor  A ( x # z )  and boundary operato s {B 1 and (B-1 j P O  3 j=o 
a + 

defined by (6-l2)* 

inequa l i ty  (6-16), 

then f o r  any i n i t i a l  va lue  func t ion  uo(x)cHB [a ,b] ,  t he re  ex is t s  a unique 

genera l ized  so lu t ion ,  u ( x g t ) ,  such t h a t  

L e t  the  system (A(x,ax)${B $B-}) s a t i s f y  (5-23) and 

I f  w e  consider t h e  ini t ia l -boundary value problem (6 - l l )$  

2m 

3 3  

( i )  f o r  every t > a , u ( x , t ) ~ H ~ [ a , b ] ;  B 

( i i )  

( i i i )  

u (x , t )  is  a genera l ized  solution of (6All);  

u(x,O) 2 uo(x), and u(x, t )  s a t i s f i e s  t h e  boundary condi t ions 

i n  the  classical sense; 

( iv)  t he  n u l l  so lu t ion ,  is s t a b l e  i f  B = 0 (and i s  asymptot ical ly  

s t a b l e  i f  B > 0) with respec t  t o  the  L2-norm, where B is  t h e  d i s s i p a t i v i t y  

constant  i n  the  e q u a l i t y  (6-16). 

Proof. We def ine  the  evolu t ion  equat ion as w e  did i n  (6-15) 

where t h e  a b s t r a c t  opera tor ,  A,  is def ined by (6-14) and A is a closed l i n e a r  

operator .  From l e m m a  6.3.3. we see t h a t  D(A)cL [a,b],R(A)cL [a ,b ] ,  D(A) is 

dense i n  L [ a ,b ]  and R(1-(-A)) = L [a ,b] .  From lemma 6-3.2,  -A is  s t r i c t l y  

d i s s i p a t i v e  i f  B 

t i v i t y  constant  i n  (6-16)* We can now apply t h e  r e s u l t s  of lemma 6.1.2, and 

see the re  e x i s t s  a unique s o l u t i o n  u ( t )  of (6-15), such t h a t  u(0) = u and 

from d e f i n i t i o n  6.1.1, f o r  every tL0, u(t)cD(A). Therefore,  from d e f i n i t i o n  

6.2.1, u (x , t )  is  a general ized s o l u t i o n  of (6-11) such t h a t  f o r  every t > O ,  - 
u ( x , t ) ~ D ( A )  = HB [a ,b]  and u(x,O) = u,(x). 

2 2 

2 2 

0 and is d i s s i p a t i v e  i f  B * 0, where 13 i s  t h e  diss ipa-  

0 

2m 2m From t h e  d e f i n i t i o n  of Hg [a ,b] ,  

ee t h a t  u (x , t>  sa t l i s f i e s  t h e  boundary condi t ions i n  the  c l a s s i c a l  sense.  

2m Since u ( t )  E OEHB [a ,b]  = D ( A ) ,  and A(0)  = 0, w e  see t h e  n u l l  s o l u t i o n  is  

s t a b l e  i f  B = 0 (and is asymptot ical ly  s t a b l e  f o r  13 > 0) with r e spec t  t o  

2 
the  L -norm, q@d 
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6 . 4 .  S t a b i l i t y  of t h e  Solut ion of 8 Nonlinear 

Initial-Boundary 

I n  t h i s  s ec t ion ,  w e  will give  s u f f i c i e n t  conditions t o  ensure 

the  ex is tence ,  uniqueness and s t a b i l i t y  of the so lu t ion  t o  the  nonl inear  

init ial-boundary value problem 

auO_ -k A(x,D)u(x, t )  = f (u) x&a, t20 a t  

where A(x,D) is a s t rong ly  e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  opera tor ,  and 

*l satisfies genera l  boundary condi t ions,  and f (u) is, i n  genera l ,  { Bj 1j-O 

a nonl inear  funct ion s a t i s f y i n g  c e r t a i n  conditions i n  some prescr ibed 

Hi lber t  space. 

the r e s u l t s  of Pao E231 i n  solving the  s t a b i l i t y  problem f o r  t h e  nonl inear  

evolut ion equat ion 

I n  order  t o  study t h i s  nonl ineas  problem, w e  need t o  u t i l i z e  

duo + Au(t) = f (u )  d t  

u(0) = uo 

where A is  t h e  a b s t r a c t  operator  extension of A(x,D), such t h a t  t h e  domain 

and range of A a e contained i n  some Hi lbe r t  space H. 

consider t he  case QeRns n22 and i n  6.42 w e  w i l l  look a t  the  one dimensional 

case 51 = (a,b)cR 

I n  6.4 

1 

6.41. The Nonlinear St: l i t y  Problem for t h e  Case n 2 2 
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I n  t h i s  s ec t ion ,  s t a b i l i t y  c r i t e r i a  w i l l  be given i n  order  t o  

so lve  the  nonl inear  

case n 2 2. 

nitiaf-boundary value problem defined on $2 

F i r s t ,  w e  m u s t  state some preliminary lemmas which w i l l  g ive  

s u f f i c i e n t  conditions t o  ensure the  ex is tence ,  uniqueness and s t  

the  s o l u t i o n  t o  the  operator  evolut ion equation 

4- Au(t) = f ( u )  
d t  

u(0) = u 
0 

(6-17) 

where A is  the  operator  Pepresentat ion of a s t rong ly  e l l i p t i c  p a r t i a l  

d i f f e r e n t i a l  operator ,  A(x,D) with general  boundary conditions and f (u )  is, 

i n  general ,  a nonl inear  function. 

so lu t ion  to (6-17)e 

We must  def ine  what is meant by a 

Defin i t ion  6.41.1. u ( t )  is a so lu t ion  of (6-17) i f  

( i )  

( i i )  u ( t )  is uniformly Lipschi tz  continuous i n  t ;  

( i i i )  t he  weak de r iva t iv  of u ( t )  e x i s t s  f o r  every t20, and 

f o r  every tLO'9u(t)ED(A) and u(0) - uo; 

equals (-A) u (t) 

rong de r iva t ive  

= (-A)u(t) + f ( u )  d t  

e x i s t s  and is s t rongly  continuous except a t  a countable number of values  

of t. 

The following key result and s o l u t i o n  of t h e  nonl inear  s t a b i l i t y  

equation (6-17) is due t o  Pa0 [231. problem fog the  evo lu t io  

Theorem 4.41. L e t  A be a l fnea r  operator  with domain and range 
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both contained i n  the  same Hlelbert space H, such that D(A) is dense 

i n  H and R(1-(-A)) = H. 

e x i s t s  a constant  f3 0, such t h a t  for any uaD(A) 

I f  A s a t i s f i e s  t h e  following inequal i ty:  t he re  

(6-18) 

where ( a  ,.> is  an inner  product equgvalent t o  t h e  one defined on H;  and e 
f s a t i s f i e s :  

( i )  

the  s t rong  topology t o  the  weak topology and f is  bounded on every bounded 

subse t  of He 

f maps a l l  of H i n t o  Ii, where f is continuous from H with 

(ii) There e x i s t s  a constant k 6, k can be negat ive,  such 

t h a t  f o r  any U,VEH 

(6-19) 

where 8 is  t h e  d i s s i p a t i v i t y  constant  i n  (6-18), and (., .Ie is  t h e  inner  

product equivalent  t o  t h e  one on H. Then, f o r  any u~ED(A),  t he re  e x i s t s  

a unique so lu t ion  u ( t )  of (6-17) with u(0) = uo, and t h e  n u l l  so lu t ion ,  

if f(O)=O, is asymptotically s t a b l e  i f  k < B ,  and is s t a b l e  i f  k = B ,  with 

respec t  t o  the  H - nom. 

An important subc lass  of nonl inear  funct ions,  f, s a t i s f y i n g  the 

condi t ions i n  theorem .41.1, is the  class of Lipschi tz  continuous functions.  

The following r e s u l t  is a coro l la ry  i n  [23] .  

Corollary 6.41.1. L e t  A be the  a b s t r a c t  operator  s a t i s f y i n g  

the  hypothesis of theorem 6e41019  and f s a t i s f i e s :  

f is defined on all of H i n t o  H, and f i s  Lip i t z  continuous 

with Lipschi tz  constant  e e x i s t s  a c 

such t h a t  f o r  any U,VEH 
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Then, f o r  any i n i t i a l  value funct ion u &D(A),  t he re  exists a unique 

so lu t ion ,  u ( t ) ,  of (6-17) with u(0) = uOD and the  n u l l  so lu t ion ,  i f  i t  

e x i s t s ,  is  asymptot ical ly  s t a b l e  if k c B and is s t a b l e  i f  k = 6, with 

respec t  t o  the  H - norm. 

0 

L e t  us now consider t h e  following nonl inear  ini t ia l -boundary 

value problem 

u x t )  a a t  + A(x,D)u(x,t) = f (u) XEQ, t > O  

d i f f e r e n t i a l  opera tors  defined by 

(032m- 1 )  (6-21) 

such t h a t  t h e  system (A(x,D) B 1 ,Q) s a t i s f i e s  (5 -9)  and inequa l i ty  (6-7) 

and the nonl inear  func ions  f, s a t i s f i e s  t h e  condition: 
j 

2 2 f maps a l l  of L ) i n t o  L (n), where f i s  continuous 

2 from the  s t rong topology of L2b) to the weak toPofogy of L (521, and f 

maps all bounded subse ts  of L ( 0 )  i n t o  bounded s 

a constant  k L B S  k c be negat ive and B is t he  s s i p a t i v i t y  constant  

i n  (6-7), such t h  

2 Also, t h e r e  ex is t s  (6.,22) 



1 2 4  

Then, w e  def ine  the  a b s t r a c t  operator  A, 

(6-23) 

(6-24) 

We see from lemma 6.2.4 t h a t  A is t h e  smallest closed U n e a r  

2 
extension of T I n  L ( f i l e  We obta in  the  following evolut ion equation 0 

+ Au(t) = f ( u )  dt 

where A is defined i n  (6-24), and f is t h e  ponl inear  funct ion defined above 

i n  (6-22). We m u s t  def ine  what is meant by a so lu t ion  t o  (6-20). 

Def in i t ion  6.41.2. u ( x p t )  is  a general ized so lu t ion  of (6-20) 

i f  u ( t )  is a s o l u t i o n  of (6-25) i n  the  sense of d e f i n i t i o n  6.41.1. 

We are now ready t o  so lve  t h e  nonl inear  s t a b i l i t y  problem. 

Theorem 6.41.2. L e t  us consider t he  s t rong ly  e l l i p t i c  p a  

defined )m-l 
3 P O  

d i f f e r e n t i a l  opera tor ,  A(x,D)  

i n  (6-21), such t h a t  t he  system ( A ( X % D ) ~ { B  ) ,Q)  s a t i s f i e s  conditions (5 -9)  

and inequa l i ty  (6-7), and the  nonl inear  funct ion,  f ,  8 tisfies (6-22) e 

I f  w e  consider t h e  nonl inear  ini t ia l -boandary va lue  problem (6-20), then 

f o r  any i n i t i a l  value furaction u (x)cHB ( Q )  t he re  e x i s t s  a unique general-  

i zed  so lu t ion ,  u(x,t) such t h a t  

and t h e  boundary opera tors  6 

J 

2m 
0 
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2m 
B ( i )  f o r  every tL09u(xPt)&H (a); 

( i i )  u(x, t )  is a genera l ized  s o l u t i o n  of (6-20) ; 

( i i i )  u(x,O) E u (XI, and u (x , t )  s a t i s f i e s  t h e  boundary 
0 

condi t ions i n  a general ized sense; 

( i v )  any equi l ibr ium s o l u t i o n  ( i f  f (0 )  = 0,  t h e  n u l l  s o l u t i o n ) ,  

is asymptot ical ly  s t a b l e  i f  k < B ,  is s t a b l e  i f  k = 8 ,  with r e spec t  t o  

the  L 

i t y  cons tan t  i n  (6-7). 

2 - norm, where k is the  constant  i n  (6-22) and 8 i s  the  d i s s i p a t i v -  

Proof. We def ine  the  a b s t r a c t  opera tor  equation 

f Au(t) = f ( u )  d t  

u CD(A) 
0 

u(0) = uo 

where A is defined i n  (6-24) and is the  smallest closed extension of the 

opera tor  T which is  defined i n  (6-23). From lemma 6.2.6, w e  see t h a t  t he  

domain D(A) and range R(A) are both contained i n  t h e  real Hi lbe r t  space 

2 2 2 H E L ( 5 6 )  such t h a t  D(A) is dense i n  L ( a )  and R(1-(-A))  = L ( a ) .  From 

lemma 6.2.5, w e  have the  followdng inequal i ty :  t he re  e x i s t s  a constant  

B 2 0, such t h a t  f o r  any u&D(A) 

0’ 

2 Now, s i n c e  f s a t i s f i e s  (6-22) with H 5 L (Q), w e  can apply theorem 6.41,l .  

Since uo€D(A) is given, t h e r e  e x i s t s  a unique s o l u t i o n ,  u ( t ) ,  of (6-25) 

such t h a t  

8o lu t ion)  

if k = B ,  

6.4Be2 w e  

such t h a t  

u(0) = uos and the  equi l ibr ium s o l u t i o n  ( i f  f(0) = 0, t h e  n u l l  

e x i s t s ,  f a  asymptot ical ly  s t a b l e  i f  k B ,  and is s t a b l e  

2 with respect to t h e  L - nom. From 

know t h a t  t he  sts a genera s t ) ,  of (6-20) 

for every t 2 0, u(x,t)&HB (Q) 

f i n f  thons 6 41 e 1 and 

2m u(x, t) s a t i s f i e s  
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the  boundary condi t ions i n  a general ized sense.  

see t h a t  u(x,O) I u (x)&HB (Q), 

f (0 )  = 0 ,  the  n u l l  s o l u t i o n ) ,  i f  i t  e x i s t s p  is  asymptot ical ly  s t a b l e  i f  

k B ,  and is  s t a b  i f  k = 8 ,  with respect t o  t h e  L - norm. 

Since u(0) = uoo w e  

i m  F ina l ly ,  t h e  equi l ibr ium s o l u t i o n  ( i f  
0 

2 

Remark 6.41.1. From t h i s  theorem, w e  can see t h a t  even i f  

B = 0,  and fo r  every ueD(A) 

we w i l l  have asymptotic s t a b i l i t y  of the  s o l u t i o n  t o  (6-20) i f  t he  constant  

i n  inequa l i ty  (6-22), k < 0. 

6.42. The Nonlinear S e a b i l i t y  Problem f o r  t he  Case n = 1 

I n  t h i s  s ec t ion ,  w e  consider  t he  nonl inear  s t a b i l i t y  problem 

1 where t h e  space v a r i a b l e  xcQ = (a,b)CR and --co*< a < b =. Consider t h e  

following init ial-boundary value problem, 

a - +- A(x,-)u(x, t )  = f (u) xs[a ,b]  ,tip a t  ax 

a 4- m-1 - m-1 
where A ( x , ~ ) ,  {B 1 and { B  1 are the  l i n e a r  p a r t i a l  d i f f e r e n t i a l  

J j=o j 1-0 
a 4- 

pera tors  defined by (6-12), such t h a t  stem ( A ( X @ ~ ) ~  {B $B-}) 
j j  

s a t i s f i e s  (5-23) and inequal f ty  (6-l6), and t h e  nonl ine 

s a t i s f i e s  (6-22) e 

Mow, w e  def ine  the a b s t r a c t  ope 
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a ,b]  is  defined i n  (6-13). We then ob ta in  the  evolut ion 

du(t) 4- Au(t) = f (u)  d t  

u(0) = u 
0 

(6-27) 

where A is  def ined above, and D(A) and R(A) are both contained i n  t h e  

real Hi lbe r t  space H 5 L [a,b]. 

t h i s  s ec t ion ,  

2 W e  are now ready f o r  t h e  main r e s u l t  i n  

Theorem 6.42.1. L e t  us consider t h e  nonl inear  ini t ia l -boundary 

{ B. 1 and IB-1  are t h e  l i n e a r  p a r t i a l  
a + value problem (6-261, where A ( x , z )  

d i f f e r e n t i a l  opera tors  defined i n  (6-12), such t h a t  the 

{ B  

(6-22), 

a unique general ized so lu t ion ,  u ( x , t ) ,  such t h a t  

J j 
a 

system ( A ( x , z )  
+ B-1) s a t i s f i e s  (5-23) and (6-16) while t he  nonl inear  func t ion  s a t i s f i e s  

2m 
j’ J 

Then, f o r  any i n i t i a l  value func t ion  uo(x)€HB [a ,b] ,  t he re  ex i s t s  

2m 
( i )  

( i i )  u (x , t )  is a general ized s o l u t i o n  of (6-26); 

( i i i )  

f o r  every t: 0,  u(x,t)EHB [a ,b] ;  

u(x,O) 5 uo(x),  and u ( x b t )  s a t i s f i e s  t h e  boundary 

condi t ions i n  the  classical sense;  

( i v )  If f ( 0 )  = 0 ,  t h e  n u l l  so lu t ion  is asymptot ical ly  s t a b l e  

2 if k < 6, i s  s t a b l e  if k = B, with respect to  t h e  L -nom, where k is 

the  constant  i n  (6-22) and B is t h e  d f s s f p a t i v i t y  const  

Proof. We have defined the  evolut ion equation i n  (6-27), and 

as w e  can see from lemmas 6 , 3 . 2  and 6.3.3, t h e  a b s t r a c t  operato 
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2 2 s a t i s f i e s  t he  following condi t ions,  D(A)CL [a ,b]  and R(A)cL [a ,b]  such 

t h a t  D(A) i s  dense i n  L [a ,b]  and R(1-(-A)) = [a, b ] e Furthermore - 2 

s a t i s f i e s  t h e  inequa l i ty :  

any ucD(A) 

t h e r e  e x i s t s  a constant  B 2 0, such t h a t  f o r  

Since f s a t i s f i e s  (6-22), w e  can now apply theorem 6.41.1 and see t h a t  

t he re  e x i s t s  a unique so lu t ion ,  u ( t > $  of t h e  evolu t ion  equat ion (6-27) 

such t h a t  f o r  every t 2 0, u(~)ED(A)  = HB [a ,b] ,  and u(0) = u 

equi l ibr ium s o l u t i o n  ( i f  f ( 0 )  = 0, t h e  n u l l  so lu t ion ) ,  i f  i t  e x i s t s ,  is  

asymptot ical ly  s t a b l e  i f  k < B ,  and is  s t a b l e  i f  k = B ,  with r e spec t  t o  

the  L - norm. Hence, from d e f i n i t i o n  6.41.2, we see t h a t  t h e r e  ex is t s  

a genera l ized  s l u t i o n ,  u (x , t )  of (6-26) such t h a t  f o  every t 0,  

u(x,t)EHB [a ,b] ,  and u(x,O) f u (x), and t h a t  u ( x P t )  s a t i s f i e s  t h e  bound- 

a ry  condi t ions i n  the  classical sense.  F i n a l l y ,  the  equilibrium s 

( i f  f ( o )  = 0 ,  t he  n u l l  so lu t ion )  

i f  k e 6 ,  and is  s t a b l e  i f  k = 8 ,  with  r e spec t  to t h e  L - nom,  qed 

2m Also, the  
0 

2 

2m 
0 

if i t  e x i s t s ,  s asymptot ical ly  

2 

p l i c a t i o n s  t o  Partial D i f f e r e n t i a l  Equations 

There i s  a l a r g e  class of phys ica l  and engin 

problems which f t i n t o  the  theory developed i n  t h e  previous sec t ions .  

t h i s  s ec t ion ,  we consider  some a p g l i c  t fons  of both l i n e  

ini t ia l -boundary va lue  problems which i l l u s t r a t e s  how the  theory can be 

In 

e s p e c i f i c  s t a b i l i t y  probP 

D i r i c h l e t  problem, 

s p e c i a l  case of t he  r e s u l t s  B 6 - 3 -  I n  t h e  second garb, 6 , 5 2 ,  

w e  w i l l  consider s p e c i f i c  ewmpEes of s t a b t f i t y  problems which will show 

us the  l a r g e  class of problems t h a t  f i t  i n t o  the  theory we developed, 

t h a t  t h e  r e s u l t s  of Buie in [ 7 ]  is j u s t  a 
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6,51. The D i r i c h l e t  Problem 

I n  t h i s  s ec t ion ,  w e  w i l l  show t h  t the  r e s u l t s  of Buts [ 7 ] ,  

i n  which he  solved the  s t a b i l i t y  problem f o r  D i r i ch le t  boundary cond 

is a s p e c i a l  case of t h e  r e s u l t s  i n  s ec t ions  6.2 and 6.3. 

i f  w e  r e s t r i c t  t h e  system of boundary operators  { B  1 

boundary conditions,  our  r e s u l t  is t h e  same as t h a t  f o r  Buis. We w i l l  

f i r s t  consider t h e  case n 2. 

I n  o the r  wordsB 

m - l  t o  be t h e  D i r i c h l e t  3 3-0 

L e t  us consider  the following ini t ia l -boundary value problem 

u x t  
-k A(x,D)u(x,t) - 0 a t  XEQ t20 

(an) a j u ( x , t )  = 0 XEaQ t>O (OLJLrn-1) 

(6-28) 

where A(x,D) is  a s t rong ly  e l l i p t i c  formal p a r t i a l  d i f f e r e n t i a l  operator  

i n  E, of order  2m, with i n f i n i t e l y  d i f f e r e n t i a b l e  c o e f f i c i e n t s  

bounded domain i n  Rnp n 2 2, such t h a t  aQ is of c l  s Coo and Q is l o c a l l y  

on one s i d e  of an,  as defined i n  s e c t i o n  3.43, 

following r e s u l t ,  which wl. t he  

case n 2 ,  i f  t h e  system of boundary operators  are rest 

Di r i ch le t  bound y condi t ions,  the  r e s u l t s  of Buls are just a s p e c i a l  

case of theorem 6,2,1. 

problem (6-28) where A(x,D) and 62 s a t i s f y  the  condi t ions given i n  (6-283, 

C 0, where C and C2 are the  If t he re  ex%sts a constant  B = jy- - 
constants  i n  Garding's inegu 

2 1 
0 

c t i o n  5,2), and C is t h e  const 
0 
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2 from the  continuous i n j e c t i o n  mapping from Hm(52) i n t o  L ( Q ) ,  t h a t  is 

I I * I I o  5 C o l l e l I m ,  then f o r  any U , ( X ) E H ~ ~ ( Q )  $ ( a )  t he re  e x i s t s  

general ized s o l u t i  n, u (x , t ) ,  of (6-28) such 

(i) 

( i i )  u(x,O) 5 u (x) ,  and u ( x g t )  s a t i s f i e s  t he  boundary condi t ions 

f o r  every t 2 0, u(x,t)EH2m(52 

0 

i n  a general ized sense; 

( i i i )  t he  n u l l  s o l u t i o n  is  asymptot ical ly  s t a b l e  with respec t  

2 t o  the  L - nom. 

Proof. From the  hypothesis,  w e  know t h a t  A(x,D) is  s t rong ly  

e l l i p t i c  i n  E of order  2m, wi th  i n f i n i t e l y  d i f f e r e n t i a b l e  c o e f f i c i e n t s ,  and 

i?, is  a bounded domain i n  Rnp such t h a t  352 i s  of class CQ) and 52 i s  l o c a l l y  

on one s i d e  of 352, L e t  us def ine  the  system of boundary opera tors  

m-1 From example 5.21.1, w e  see t h a t  {B 1 is a normal system and s a t i s f i e s  
j j=o 

t he  s t rong  complementary condi t ions with r e spec t  t o  A ( X , D ) ~  where the  m 

boundary opera tors  o re  of order  m 

Also, t h e  coe f f i c i en t s  are constant.  Therefore, the  system (A(x,D) 

= j 2 2m-1, and are independent of t i m e .  
j 

{(.;i.;;' a j  ) , 5 2 )  s a t i s f i e s  condi t ion (5-9Ia We m u s t  now show t h a t  i n e q ~ l i t y  

(6-7) is s a t i s f i e d ,  Since A(x,D) is  s t rongly  e l l i p t i c  i n  52, i t  is 

> -  
- co 

(c 
0 

2 2 14 I ,  - C * l  I 4  I, 
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It can be  seen t h a t  i n e q u ~ l i t y  (6-7) is s a t i s f i e d ,  s i n c e  t h e r e  e x i s t s  a 

constant  B > 0, such t h a t  f o r  any u&CB(R) 
00 

The r e s u l t s  of theorem 6.21.1 now applyp i f  w e  note t h a t  H2m(Q> = 

H2m(Q)fl$(Q) (see remark 3.46.2) 

t he re  exists a unique genera l ized  s o l u t i o n  u(x , t )  of (6-281, such t h a t  

f o r  any t O,u(x,t)cHB 2m (Q) = H2m(Q)nH:(Q), and u(x,Q) i uo(x). Also, 

u (x , t>  satisfies t h e  boundary condi t ions i n  a genera l ized  sense,  t h a t  i s ,  

from the  d e f i n i t i o n  of HB (a )  

B 

Therefore,  s i n c e  U ~ ( X ) E H ~ ~ ( Q )  

2m 

Since B > 0, the n u l l  s o l u t i o n  is  asymptot ical ly  s t a b l e  wi th  r e spec t  t o  

2 t h e  L - norm, qed 

It remains t o  prove the  theorem f o r  t he  case n 

consider t h e  following ~nitial- bound^^ value  problem, 

(&)ju(b,t)  = (ax) a j u ( a , t )  = o f o r  each f ixed  t l 0  (OLJLm-1) 
u(x,Q) = uo(x> (6-29) 

a 
where A(x,-s$ is  a s t rong ly  e l l i p t i c  l inear  d f f e r e n t i a l  opera tor  on [ 

a b l e  c o e f f i c i e n t s  
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Hm[a,b], t he re  e 
0 

of ( 6 - 2 9 )  such t h a t  

t 0, u(x,t)cH2m[a,bl 

(ii) u(x,O) 2 uo‘ )s and u(x , t )  s a t i s f i e s  t h  

condi t ions i n  the  class 

( i i i )  t h e  n u l l  so lu t ion  i s  ~ s ~ p t o ~ ~ c  

2 ect t o  the  L - nom,  

a 
ax Proof. FEQm t he  hypothesis,  A(x,-) is s t rongly  e l l i p t i c  i n  

[a,b] with i n f i n i t e l y  d i f f e r e n t i a b l e  coe f f i c i en t s .  L e t  us def in  

boundary operators ,  f o r  each f ixed  t 0, 

+ a  
j ax j ax We can r ead i ly  see t h a t  B (-) $B-&) are a l l  linear d i f  f e r ~ ~ t i ~ l  opera 

with constant  Coeff ic ien ts  of orders  m 

of time. Also, t h e  systems { 1 arc l i n e a r l y  independent, This sh  

t h a t  t h e  system (A(X,=). { B  ,I%-}) s a t i s f i e s  (5-231, 

theorem 6.51.1, f om t h e  d ~ f ~ ~ ~ ~ ~ o n  of WB [a,b] (sea (6-13)), th 

+ -  = j52m-1, and are i n d ~ p e ~ d e n ~  
j = mj 

a + As was ~~~~e~ in 
2m 

J j  

63 > Os such t h a t  f o r  

2m 2m 
B [a,b] = H [a,b] 

so%tation, u ( x , t ) 9  of (6-29)  such t 

d u(x,O) 2 uo( 

assieal sense. 
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so lu t ion  is  asymptotocally s t a b l e  with respec ts  to  the  

Combinfng eheorems 6 , 5 l . l  and 6.5102, we can see t h  

i c h l e t  problem is a spec i  l case of the  theory developed f n  sec t ions  

6.2 and 6.3, 

6.52. Spec i f i c  Examples 

We w i l l  now give  some s p e c i f i c  examples which show t h a t  many 

phys ica l  problems can f i t  i n t o  the  theory w e  developed. 

Example 6.52.1. L e t  us consider t he  following diffus%on 

equation with the  boundary condi t ion t h a t  t h e  hea t  leaves normal t o  t h e  

su r face  a t  a rate propor t iona l  t o  t h e  amount of he t a t  t h e  sur face ,  

and the re  is no hea t  source. 

( % 2 u ( ~ , t )  i- bu(x , t )  = 0 xea a tzo 

R", n22, b>O, min ao(x) = k 
X& an 

2 
L e t  w def ine  the  opera tors  A ( D ) ,  Bo(x,D> and the  spaces C;(Q>, HB@): 
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2 00 2 HB(Q) = completion of CB(S2) he  H - n o m  

2 
= { UEH ( a )  IcBo~>l = 0). - 

2 

It w i l l  be  shown tha  :problem (6-30) s a t i s f i e s  t h e  cond t ions  of theorem 

6.2.1, which implies  t h a t  f o r  any uO(x)~HB(Q),  t h e r e  e x i s t s  a unique 

general ized so lu t ion ,  u (x , t ) ,  t o  (6-301, such t h a t  f o r  every t 

u(x,t)cHB(0) with u(x,O) I uo(x) and u(x , t )  satisfies the  boundary 

condi t ions i n  the  general ized sense. Also, the  n u l l  so lu t ion  is  

asymptot ical ly  s t a b l e  with respec t  t o  the  L 

2 

8 ,  
2 

2 - normo 
n 

(a) From t h e  hypothesis,  is a bounded domain i n  R n>20 

such t h a t  aQEC-, s2 l o c a l l y  on one s i d e  of ail.  

(b) A(D) is s t rongly  e l l i p t i c  i n  ?is with i n f i n i t e l y  

d i f f e r e n t i a b l e  coe f f i c i en t s .  

OcRnB w e  have 

This is seen  by l e t t i n g  5 =(51p.ea"n) 

a a -  
re constant ,  aacC (a )  e 

(c) By d e f i n i t i o n  B is i ~ d e p e ~ d @ ~ ~  of t i m e ,  
0 

coef f i c i e n e e  

a l  system. Th is obvious, s i n c e  B 
0 

- 3 ,  Also, t he  o 

B is mo = 12 2m-1s 1. 
0 

s t 
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strong complmenta condition, that is, i t  su f f i ces  to  verify the condition 

for  one point XoEaQs L e t  

vector at Xo is 5 ' s  (O,,,,,O,l), and the 

pick the point X o E a Q s  such that th 

angent hyperp 

lel to the plane = 0 ,  so w e  c 

hyperplane be  5 =(51,...,t$-l,0) 0. L e t  X > 0. 

First, w e  w i l l  fi the roots with posit ive 

the polynomial 

If we define2 
rl = Ci,l E,,  then 

2 
= T 2 + r l  + A .  

The m-l root with posit ive aginamry part i s  

emee, we obtain the po 

* 

t s ~ o w  Bo is 

Since 



viding B ( E  + rEg) by M*, w e  ob ta in  the remarbndez 
00 

0cRnsP and A 0, w e  ob ta in  

This shows Boo is  l i n e a r l y  independent modulo M*, which implies  t h a t  Bo 

s a t i s f i e s  t he  s t rong  complementary condition. 

Therefore, t h e  system (A(D) ,Bo(x9D)  ,Sa) satisfies (5-9) and i 

remains t o  v e r i f y  inequa l i ty  (6-7). 

i nequa l i ty  using i n t e g r a t i o n  by p a r t s  and the  bounda 

Por any ueC"(Q), w e  have t h e  fop  B 

from a well known i n  
QI 
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2 
0 B t h a t  u(x,O) E u (x)EM 

general ized sense  and s i n c e  B > 0, the n u l l  s o l u t  on i s  ~ ~ ~ ~ ~ o ~ i c a l l ~  

s t a b l e  wi th  respec t  t o  the  L - nom. 

(a ) ,  u(x,t) s a t i s f i e s  t h e  boundary condi t ions in a 

2 

Example 6.52.2. We w i l l  consider t he  d i f fus ion  equat ion fo 

case n = 1, with the  boundary condi t ion t h a t  hea t  emanates f 

a rod a t  a sate propor t iona l  t o  the amount of hea t  at t h e  rods ends, 

%k& - (5) a 2u(x9 t )  -0- bu(x, t )  = 0 XE [ 0 2 1 1  , t20  a t  

au au - ay(1 , t )  + Bu(1,t) = G ( O , t )  - au(0 , t )  = 0 f o r  each f ixed  t20 
(6-31) 

where b > 0, a 0, B - > 0 and a,B # 0 simultaneously. 

L e t  us def ine  the  opera tors  A(=), a Bi(k) Bo(x) - a  and the  func t ion  space 

fo r  each .f ixed t i 0  

a au 
B-(-)u(O,t) = ,,(O,t) - au(0 , t )  

0 ax 

a 
where the  order  of A(=) is 2 ,  

2 2 H B I O , l ]  = { UEH [O, l ] luq  (I) + B(1) = O,uu(0) - au(0) 

We will show tha  

which implies  t h a t  f o r  any u (x)eH,[O,l], t he  

so lu t ion ,  u (x , t )  of (6-31) t h  U(X,O) 2 uo such that u(x,t) s a t i s f i e s  

p r o b l m  (6-31) s a t i s f i e s  t h e  h p ~ t h e s i s  of theorem 68361 ,  

2 exists a unlque gene 
0 

conditions and the n u l l  solution is asymptot ical ly  s t a b l e  with 
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2 respect  t o  the  6, - norme 

a 
a) As i n  example 6.52.1, w e  can see A ( z )  is s t rong ly  e l l i p t i c  

i n  [O,l]. 
f 

b) 

m = 1 2  2m-1 = 1, 

t h a t  the system (A(j--) ,B+&) 0 ax ,B-$-)) o ax s a t i s f i e s  (5-23) and .it remains t o  

v e r i f y  inequa l i ty  (6-16). 

Bo is l i n e a r l y  independent, s i n c e  the re  is one tern of order  

S imi la r ly ,  Bo is l i n e a r l y  independent. This shows 
0 

a 

In  order  t o  do t h i s ,  we need t h e  following lemma. 

I f  a 2 0,B 2 0 and a,B SCI 0 simultaneously,  we Lemma 6.52.1. 

have the  following inequdili t y  

$o(dx -j2dx 4- 6u2(1) f au2(0) - > €I 0 0  11u2(x)dx, f o r  some C 0 > 0. 

2 Proof. L e t  UEL [O,f]. W e  see t h a t  

gument, we can amume a 0,  Therefore,  

2dx e 2 up (x) I2d 
0 - 

ere Cl = max ( 
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2 prove inequa l i ty  (6-161, FOK any wHB [ O , l ] ,  from i n t e g r a t i o n  

by parts, the  boundary condi t ions and from lama 6.52.1we have 

= -,1(w)2dx o dx 9 u ( l ) u ' ( l )  - u(O)u'(O) - bliu2(x)dx 

6 - [ j 1 ( m ) 2 d x  + $u2(l)  -4- QU 2 (O)] 
- o dx 

where $ = Go > 0. 

t he  hypothesis of theorem 6.3.1, w e  can u t i l i z e  those r e s u l t s .  

t he re  e x i s t s  a unique general ized so lu t ion ,  u(x,t) ,  of (6-31) wi th  u (  

u0(x)* s a t i s f y i n g  the  boundary condi t ions i n  the  classic 

This proves inequa l i ty  (6-16). Since w e  have v e r i f i e d  

Hence, 

s i n c e  B 

t o  the  L 2 

Co > 0,  t he  n u l l  so lu t ion  is asympto f c a l l y  s t a b l e  with respec t  

- norm, 

Let us consider t he  st y problem in 

e 6.52, l  with a h e a t  source, OF a nonl inear  funct ion on the right 

hand s ide .  Ca 
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x&an t ~ o  (6-32) 

2 

- 2  2 x + u  

u f ( u )  = k 

where the  opera tors  A(D),B (x,D) are def ned as i n  example 6,52*19 b > 0 
0 

k and min uo(x) kl > 0. I assert, i f  ],I 5 C min ( l , k  ) 9  where Co is the  
0 1 

XE: asl 
constant  i n  F r i ed r i ch ' s  i nequa l i ty  i n  example 6.52.1, then the re  e x i s t s  a 

unique general ized s o l u t i o n  of (6-32) s a t i s f y i n g  t h e  boundary condi t ion 

and i n i t i a l  condi t ion,  such t h a t  i f  1 ~ 1  .z C min ( l ,kl)  then the  n u l l  

so lu t ion  is  asymptot ical ly  s t a b l e ,  and i f  lr;l = Co min ( l ,kl)  t h e  n u l l  

so lu t ion  is s t a b l e  with respec t  t o  t h e  L - normo From example 6.52.1, w e  

know t h a t  the  system (A( ) $Bo (x,D) ,a) s a t i s f i e s  (5-9) and inequa l i ty  

(6-7) with B f C min ( l , k  ), and i n  order  t o  use the  r e s u l t s  of theorem 

6.41.2, i t  m u s t  be shown t h a t  t he  funct ion f s a t i s f i e s  (6-22). We can 

see read i ly  t h a t  f maps a l l  of L (sl) i n t o  L ($2) and maps bounded sets i n t o  

bounded sets. It s u f f i c e s  t o  v e r i f y  the  following inequa l i ty  

k 
0 
k 

2 

0 1 

2 2 

which shows t h a t  f i s  continuous 

topology and 

2 fo r  every U,VEL (sl) (6-33) 

2 on the  s t rong  topology of L (Q) 

which is our  des i red  result, To see (6-331, we have 

9 

t o  t he  weak 



2 2  2 
I dx 

2 A2u2 + u2v2 - A2v2 - u v 
= k !,I 

( A 2  + u2)(A2 + v 2 ) 

2 2  2 
I dx 

U - Q  

+ u2)(A2'+ v2) 

u + v  i 2 1 u - v l  2 dx 

(A2 + u2) ( A 2  + v2)  

2 2 I I u - v ~  dx 2 4  u(x) + v(x) l  
2 n  <, k 1x1 max ' 

XESZ ( A 2  + u2(x))3A2 + v2(x) )  

rs- 

This fol lows,  s i n c e  i t  can be e a s i l y  shown t h a t  f o r  any u,v real numbers 

Hence, w e  have v e r i f i e d  inequa l i ty  (6-33) which shows t h a t  f s a t i s f i e s  

(6-22). Since problem (6-32) s a t i s f i e s  t h e  hypothesis of theorem 6.4l.2$ 

w e  can apply these  r e s u l t s  and see t h a t  t he re  exists a unique general ized 

so lu t ion  u ( x , t )  of (6-32) with u(x,O) I uo(x), such t h a t  u ( x , t )  s a t i s f i e s  

t he  boundary condi t ions i n  t h e  genera l ized  sense ,  and s i n c e  f(0) = 0, t he  

n u l l  s o l u t i o n  is asymptot ical ly  s t a b l e  with r e spec t  t 

k k 1x1 4 Co min (19kl)$ and is s t a b l e  i f  I$  
L~ - n o m  i f  

C min ( l rk l ) .  
0 

Example 6.52.4, L e t  us consider a more involved p 

c ian ,  found i n  L i o ~ s - ~ a ~ ~ ~ @ s  [18] 

2 9 h u(x9t )  = f (u)  a t  XES2 p t>O 

(6-34) 



here A(D) ,Bo(D) ,B1(D) , f and s2 are defined below: 

2 2 

J 

where the  order  of A(D) i s  4 ,  and m = 2; 

where A = l y = l ( q ) 2  a = Laplacian; 

2 2 
f ( u )  is a nonlinear  func t ion ,  mapping a l l  of L (a) i n t o  L (a), 

2 
and is continuous from the  s t rong  topology on L (Q) t o  t h e  weak topology, 

mapping bounded sets i n t o  bounded sets with f (0)  = 0, and the re  e x i s t s  

2 
a constant  k 5 0, such t h a t  for any u,veL (a) 

m 
51 is a bounded domain in Rn, n 2 2, such t h a t  as2 is of class C 

W e  def ine  t h e  func t ion  spaces,  Ci(SZ) and SZ l o c a l l y  on one s i d e  of as1, 
4 
HB (a) 9 

m -  a c (52) I A U  = a n ( ~ ~ )  = o on an) 

00 4 completion of C,(51) with r e spec t  t o  t h e  H - nom 

4 t f o r  any u ( )cHB(S;2) 

x g t ) ,  of (6 -34)  s a t i s f y i  

t h e r e  exists 
0 

condition, such t h a t  if k < 0, t he  n u l l  s o l u t i o n  is 

(if k = 0,  t h e  n u l l  s on i s  s t a b l e )  
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To prove t h i s  a s se r t ion ,  w e  w i l l  show t h a t  problem (6-34) 

v e r i f i e s  t h e  hypothesis of theorem 6e  41.2, 

(a) The smoothness property on 52 i s  t r u e  from the  above 

hypothesis.  

(b) A(D) is s t rong ly  e l l i p t i c  i n  5. Indeed, f o r  every 5 + OcR" 

(c)  {Bo(D),B1(D)) is a normal system. Indeed, the  orders  

m = 2,ml = 3 are d i s t i n c t .  Now, a f t e r  the  transformation 6 (see s e c t i o n  

5.22) 

0 i 

w e  ob ta in  t h e  transformed boundary opera tors  

(6-35) 

which are i n  the  equivalent  form (5-8) and s a t i s f i e s  d e f i n i t i o n  5.21.3. 

(d) {Bo(D) ,Bl(D)) s a t i s f i e s  t h e  s t rong  complementary condition2 

Indeed, from (6-35) and s i n c e  A(D) is inva r i an t  under 6 (see example 

5,22.l)  

Therefore,  we can apply theorem 5.22.2 where it s u f f i c e s  t o  v e r i f y  t h e  

f 
w e  have t h a t  t he  system { A (  ) ,Bo(D) ,Bl(D)) is  inva r i an t  under Oie 

s t rong  cornplementa condi t ion f o r  j u s t  one po in t  on an ,  L e t  us consider  

the poin t  XcaQ such t h a t  t he  tangent hyperplane t o  aSl a t  X i s  p a r a l l e l  t o  
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part of the polynomial 

(-1)"A (5 + TS + A * 
0 

2 2 = (4, + . * 0 4- Sn-l + T2)2 + A 

2 2 2  
= ( ( t l  + T )  + A  

2 2  4 = T 4  + 2rl T + (n + A). 

I t  can be eas i ly  seen that 

4 
-n2 -?: ifi 2 -2n 2 + 9 &  rl 4 - 4(q + A )  

2 T =  

where by a direct calculation w e  obtain 

Therefore, the 
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and w e  ob ta in  t h e  following polynomlal 

* * * 
PI (n ,a)  = (T-T ) (T-T2)  ( T - & ) ( T - C )  s T2 - (& 4- F ) T - k & &  a a a a 

Next, w e  must prove t h e  polynomials B (5 + rS') and Blo(5 + ~5') 
00 * 

are l i n e a r l y  independent modulo M ( r l , A ) .  To show t h i s ,  we see t h a t  

* 
and upon d iv i s ion  by M ( r l , X )  w e  g e t  t h e  remainder 

Similarly,  f o r  Blo w e  see t h a t  

* 
and upon d iv i s ion  by M ( r l ,X)  we g e t  t h e  remainder 

Hence, s i n c e  q # 0 and X > 0 - 



# 0. 

This shows t h a t  Boo({ + T(*)# Blo(S C TS') a e l i n e a r l y  independent 

modulo M (n9A). 

s t rong  complementary condi t ion,  

* 
Therefore,  t he  system {Bo(D),B1(D))  s 

We must now v e r i f y  inequa l i ty  (6-7). Let t ing  U E C ~ ( Q ) ,  w e  have 

from Green's formula found i n  Mikhlfn [21],  and t h e  boundary condi t ions 

Hence, we h e r i f i e d  inequ 

If f f 0, since the  system (A(D),Bo(D),B1(D),Q) s 

hypothesis of theorem 6.2,1, we have t h a t  f o r  any i n i t i  
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I f  f f 0, then f s a t i s f i e s  (6-22) and w e  have from theorem 

6.41.2 t h e  same r e s u l t  as above whereby, if k <  0, t h  

asymptot ical ly  s t a b l e  (and if k 0, the  n u l l  s o l u t f  n is s t a b l e )  with 

respect  t o  the  L - norma An example of such a nonl inear  f 2 

t h e  one i n  example 6.52.3, 

These examples : l lustrate how t h e  th sry developed i n  sec t ions  

6.1 t o  6 ,4  can be used t o  so lve  a l a r g e  c l a s s  of s t a b i l i t y  problems with 

very genera l  boundary condi t ions,  where these  problems are of t h e  form 

(6-1) and (6-2). 
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7.0. STABILITY OF SOLUTIONS TO THE 

GENERAL BOUNDARY VALUE PROBLEM:: 

i= au(x’t) C A(x,D)u = f (u) 2 a t  a t  

I n  the previous chapter w e  solved t h e  s t a b i l i t y  problem f o r  t he  

ini t ia l -boundary value problem 

au(x9 t, C A(x,D)u(x, t) = f (u) a t  

which includes as an example the  hea t  equation, or  d i f fus ion  equation. 

t he re  is a l a rge  c l a s s  o f  physical  problems which does not  f i t  i n t o  the  above 

theory, an example being the  wave equation. I n  this chapter ,  w e  w i l l  

consider t h e  following e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  equation. 

But 

2 3. A(x,D)u(x,t) = f (u)  xcQ,t>O - (7-1) 
a t  

wh a is  a constant  L 0 with t h e  general  undary conditions 

and i n i t i a l  condi t ion 

where u(x , t )  is a vec lued funct ion,  such t h a t  for  eve 
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u ( x , t )  is i n  some prescr ibed Hi lber t  space, and f is a nonl inear  func t ion  

defined on t h e  Hi lber t  space,  

W e  so lve  (7-1) by reducing the  problem t o  a system of equat ions,  

as i n  t h e  l i n e a r  d i f f e r e n t i a l  equations case, of t he  form 

where A is a 2 x 2 matr ix  with operator  elements, and 1 and - f@) a 

2 - dimensional vec tors  whose 

Hi lber t  space. 

t he  equat ion (7-2) as an a b s t r a c t  operator  equat ion of the  form 

lements are func t ions  i n  a prescr ibed 

By choosing the  co r rec t  tiase Hi lbe r t  space w e  can consider 

where A is an a b s t r a c t  operator  defined on some base Hi lbe r t  space, i n  

t h i s  case H E <(a) x L (Q), 3 is an element of H, and f(2) is a nonl inear  

funct ion defined on H i n t o  H, and ag i n  using the  r e s u l t s  of Pa0 [23Ip we 

obta in  s u f f i c i e n t  c nd i t ions  t o  ensure the  ex is tence ,  uniqueness and 

s t a b i l i t y  of a so lu t ion  t o  (7-=l)* We w 11 consider  the  U n e a r  case9 

2 

r case, f o r  QeR" with  n - a 
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existence, uniqueness and s t a b i l i t y  of the nu l l  solution to the init 

boundary value problem (7-1). 

L e t  us consider the f o l l  

t. A ( x , D ) u ( x , t )  X€Q 9 t”p 2 a t  

where a is a constant L 0,  

A ( x , D )  is  a l inear fomnal partial  d i f ferent ia l  oper tor with i n f i n i t e l y  

i n  5, written i n  the divergence farm differentiable coef f ic ients  

and the boundary oper 

such that the  sys t  

c lass  C s , Q  local ly  on one side of 
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e n t i a b l e  on 3.9. 

( i v )  A(x,D) is formally se l f - ad jo in t ,  t h a t  i s  f o r  any u , v ~ C i ( Q )  

(u,A(x,D)v) = (A(x,D)u, 0 
m 

(v) For  any u9v~CB(.9) ,  

(-1) Ip Iu(x)DP ( a  (x)D'v(x))dx 
P O  

(x)Dpu (x) D'v (x) dx. 

m 
( v i )  There e x i s t s  a cons tan t  k>O, such t h a t  2or any ucCB(Q) 

2 
(u,A(x,D)u)o kl Iul l m .  

L e t  us def ine  t h e  vec tors  

2 where u,vcH E Iim(Q) x L (Q), where t h e  inner  product on II is  given by B -- 

inducing t h e  n o m  

which makes H a real Hi lbe r t  space. 

O S  
We now def ine  the  opera tor  T 

t h a t  t h e  abstract opera tor  T s a t i s f i e s  the  condi t ions t h a t  
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2 2 D(T) and R(T) are both contained i n  L (Q), such t h a t  D(T) is  dense i n  L (SI), 

and f o r  any a > O , R ( a I  - (-T)) = L (SI). 

w i t h  respect t o  the  L - inner  product,  

2 A l s o ,  -T is  s t r i c t l y  d i s s i p a t i v e  

2 

Lemma 7.1.1. L e t  To be  

( V , T ~ U ) ~  = 

A l s o ,  -T is s t r i c t l y  d i s s i p a t i v e  

t h a t  is, the re  e x i s t s  a constant  

(us (-T>u>o 

defined i n  (7-5). Then f o r  any u,vcD(T ) 
0 

2 with respec t  t o  t h e  L 

k > 0, such t h a t  f o r  any ucD(T) 

- inner  product,  

1 

Proof. From condition (7-4(iv)) and the  d e f i n i t i o n  of To3 w e  have 

f o r  any u,vcD(T ) 
0 

2 Since the  i d e n t i t y  i n j e c t i o n  from #(Q) i n t o  L (Q) is  continuous, and s i n c e  

(7-4 ( v i ) )  holds we have f o r  any ucD (To) 

2 2 2 
(U,(-To)U)o L 'kl I U I  I m  5 +Col 1.1 I o  = -q IUI Io .  

2 L e t  ucD(T). Since T is  t h e  smallest closed extension of T i n  L (Q), w e  

know t h e r e  e x i s t s  a sequence u cD(T ) 9  such t h a t  

0 

n 0 

u 4  u, 'I u 24 Tu as n +- 00, 

L2(Q> O L (52) 

Therefose, from t h e  cont inui ty  of t h e  L2 - i nne r  product 
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2 Lemma 7 . f e 2 .  T is  a l i n e a r  operator  such t h a t  D(T)CL ( a ) ,  
2 2 R(T)cL (52) and D(T) i s  dense i n  L (a ) ,  Also, f o r  any a > 0, 

Proof. From t h e  d e f i n i t i o n  of T and from l e m m a  6.2.6 w e  have t h a t  
2 2 2m 2 

D(T)CL (Q), R(T)cL (52) and D(T) = HB (SI) is dense i n  L (52). 

lemmas 6.1.3 and 6.1.4 and the  f a c t  t h a t  (-T) is  d i s s i p a t i v e ,  w e  have for 

any a > 0 

U t  

R ( a 1  - (-TI) 

(If n = 1, the same r e s u l t  holds,  

2 = L ( a ) ,  

rsing lemmas 6.3.1 and 6.3.3,) qed 

We now def ine  the  a b s t r a c t  operator  A; 

where a is t he  constant n (7-3), and the  real base Hi lber t  space 

obtaining the  a b s t r a c t  opera tor  equation 

It must be shown t h a t  t he  opera tor ,  A, s tisfies t h e  condi t ions of lema 

6,b02, We f i r s t  show t h a t  the  domain and 

H,  such t h a t  D(A) 5s dense i n  It3 and R ( L  - (-A)) = %lie 

ange of A are both contained i n  

L e m a  7,103. L e t  be hhe a b s t r a c t  opera tor  defined in (7-7), 



then D(A)cH, R(A)cH such t h a t  D(A) is  dense i n  H and R ( I  - (-A)) = PI, 

A) 5 HP(52) x %(52NH:(52) x L 2 (52) E Ill, ce HB 2m (52)cH,(~)  m 
2 and Hi(52)CL (52). 

f o r  any SED@) 

Also, from t h e  d e f i n i t i o n  of A, i t  is re l y  seen t h a t  

AzeG(52) x L 2 (a )  E H e  

It follows t h a t  R (A)cW, 

D(A) is dense i n  H. Indeed, s ince  Ci(Q)cHF(6l )c€$(R)  and C l ( 6 l )  is 

dense i n  $ ( a ) ,  w e  have t h a t  H r ( 5 2 )  is dense i n  $(a ) .  Simi lar ly ,  s i n c e  

2 2 cD0 (a )CH; (n )CL (s2 a and C t ( i 2 )  is dense i n  L (Q), w e  have t h a t  $(a)  is dense 
0 

2 2m 2 i n  L (52). Therefore, D(A) E HB (Q) x Hi@) is dense i n  H;(Q) x L (52) F H, 

F ina l ly ,  R(I - (-A)) = R ( I  9 A) = H. 

Indeed, l e t  

We m u s t  prove t h a t  t h e r e  e x i s t s  a ZED (A) 

which is equivalent  t o  showing the re  e x i s t s  ul&D(T) and u2&H;(52) 

such t h a t  (I - ( -AI12  = (1-I-A); 88 wo 
such t h a t  

Hence, i t  s u f f i c e s  t o  show the re  e ists ulcD(T) and u2&$(52) such eh 

Tu1 + (l+l%)Ul 

or, wri t t en  i n  another form 
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[ (1-t.a) I- (-T) ] u1 = (I+a>wl+w2 e 

2 By l e m a  7.1.2, s i n c e  (1-l-a) > 0,  e have R[ (1+a)I- (-T)] L (Q) which 

i m p l i e s ,  s i n c e  (l+a)w -Iw EL (Q), t h a t  t he re  e x i s t s  uleD(T) = HB (a )  

s a t i s f y i n g  

2 2m 
1 2  

[ (1S.a) I- (-T) ] u1 = (l+a) w1+w2 

m L e t  us def ine  u2 E u -w EH (Q), and w e  can see 1 1 B  

( i )  u1-u2 = u1 - (u -w ) = wl; 1 1  

( i i )  Tul + (l+a)u2 = Tul+ (l+a)(ul-wl) 

= [ (l+a)I-(-T)]ul - (l+a)wl 

= w e  2 

Therefore, w e  have shown R(1-(-A))  = H, and have completed t h e  proof of 

t h i s  lemmao. ged 

We Introduce an equivalent  inner product on H and show t h a t  t he  

operator ,  -As is  d i s s i p a t i v e  (or stric l y  d i s s i p a t i v e )  with respec t  t o  

t h i s  equivalent  i nne r  product. 

L e t  us def ine  t h e  operator  S: 

D(S) = D(T-1 

where we can see D(S) is dense i n  H, 

L e t  us def ine  a func a1 V(u,x) on D(S) as follows: for any I.I,~ED(S) 

We will show t h a t  t h i s  is a continuous b i l  near func t ion  P on D(S), in the 
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topology of H, which def ines  an equivalent  i nne r  product on D(S)  and w e  w i l l  

extend t h i s  t o  an equivalent  inner  product,  V(u,v), on a l l  of He 

w i l l  show, -A, is d i s s i p a t i v e  with respec t  t o  t h i s  equivalent  i nne r  product 

on He 

- 
Then we 

Lemma 7.1.4, The func t iona l  V(u,p7) defined above is a continuous 

b i l i n e a r  func t iona l  on D(S)  i n  t he  topology of He 

Proof a It is  clear the  V(upv) is b i l i n e a r .  L e t  

By d e f i n i t i o n ,  we see t h a t  

avl + 2v2 

(7-11) 

We m u s t  f i r s t  show t h  t the re  e x i s t s  a constan 

ulpvIIs such t h a t  

Indeed, u t i l i z i n g  cond t i o n  (7-4 (v) , t he  i ~ e q ~ ~ ~ i t i e s  

and l e t t i n g  14 
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2 2  Therefore, since I I * I  1, 5 Col 1 . 1  I m S  and by letting k, = max[2M+a Co,aCo,2], 

we have the following inequality: 

des and using the wall 
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w e  have 

Therefore w e  have 

or V(u,v) is continuous i n  t h e  topology of H, qed 

Lemma 7.1.5, The b l i n e a r  func t iona l  V&z> def ines  an equivalent  
- 

i nne r  product on D(S) i n  H, and t h e  extension, V(u,v), of V(LI,X> t o  H 

def ines  an equivalent  inner  product on the  whole space Me 

Proof, L e t  

and de f ine  

It Is f i r s t  shown t h a t  product on B(S).  S i  

is b i l i n e a r ,  we have 1 

7.Pbl, and (7-11) w e  have 
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= V(&Z) 

k& 

which shows t h a t  ( ~ , v ) ~  is syrmnetrfc. 

From condi t ion (7-4(vi)), w e  have the  following inequa l i ty  

by l e t t i n g  k2 = min (2k,l) where k is the  constant  i n  condi t ion (7-4(v 

Hence, we have sho 

any scD(S) 

e x i s t s  a const  nt k > 0, such t h a t  f 2 
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if 2 = 0. 

(7-12) and (7-13) w e  can see t h a t  t e inne r  product is  equivalent  

t o  the  one defined on H, t h a t  i s ,  the re  e x i s t s  cons tan ts  k ,k > 0, such 

t h a t  f o r  any gcD(S) 

Therefore, ( 2 % ~ ) ~  is an inner  product on D(S),  Also, from 

0 2  

(7-14) 

This i nne r  product is  extended to  a l l  of H by t h e  following d 

where u ,v are sequences i n  D(S)  such t h a t  n n  -- 

un + us vn +E as n + a, 
H - H - 

( . ,*I  def ines  an Inner  product on H, Indeed, from t h e  e 

d e f i n i t i o n  of ( ~ ~ x ) ~  and t h e  b i l i n e a r i t y  of (unevn),, ( 2 , ~ ) ~  is l i n e a r  i n  -- 
t h e  first tern. Also, s i n c e  

then ( u s ~ ) @  is symmetric. From (7-14) we hav 

This shows us t h a t  (uSgle 0, 0 if and only 

which groves t h a t  s an i nne r  product on ]Ha 

e 

i f g = O  

to the 

ties, using (7-14) 
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I 121 

I Id 

Therefore,  w e  

equivalent  t o  

have defined an inne r  product on H, ( e , . ) e S  

t h e  o r i g i n a l  i n n e r  product def ined on 8. 

2 
H 

which is 

qed 

It remains t o  prove t h e  d i s s i p  t i v i t y  of t he  operator  -A, 

Lemna 7.1.6. L e t  A b e  the  a b s t r a c t  operator  defined i n  (7-7). 

Then -A is  s t r i c t l y  d i s s i p a t i v e  with respect  t o  the  inner  product e 

i f  a > 0 ,  and is  d i s s i p a t i v e  with r e spec t  t o  (.,.), i f  a = 0, where a i s  

the  c o e f f i c i e n t  i n  (7-3). 

Proof * This lemma is proved i n  3 s t e p s  

(i) F i r s t ,  w e  show t h a t  -A is s t r i c t l y  d i s s i p a t i v e  on D(T )xD( 
0 0 

i f  a > 0 ,  and is d i s s i p a t i v e  i f  a = 0.  L e t  us pick 

Since A . & D ( S )  and (.,.), coincides wi th  (.,.) on D t S ) ,  i f  w e  l e t  kl = 

min {k,l19 where k is  t h e  constant i n  (7-4[iv)), we have t h e  following 

s 

i nequa l i ty  from lemma 7.1.1, and the  d e f i n i t i o n s  of t h e  ope ra to r s  S and A, 

= c " 1 " 9  [ 2TOU2+" 2 u2-aT0u1-a2uj 

~ ~ ~ - 2 ' 6  u -2au2 
0 1  
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= 2(ulsT0u2),-a(u T u ) -2(u2 .To~l )o-a(~  2 0  u 2 0  ) i 9 0 i 0  

= -a(u ,T u )-a(u u ) 1 i o  23 2 0  

- -  
0 

2k 

2 
= -61 Id l e  

ak 
where B = - 0 ,  and B = 0 i f  and only i f  a = 0. 21c0 (7-15) 

This proves t h a t  -A is s t r i c t l y  d i s s i p a t i v e  on D(To)xD(To) i f  a > 0 and 

is  d i s s i p a t i v e  i f  a = 0. 

(ii) Secondly, w e  show -A is s t r i c t l y  d i s s i p a t i v e  on D(T)xD(T ) 

Let t ing  

0 

if a > 0, and i s  d i s s i p a t i v e  i f  a = 0. 

w e  see t h a t  A . E U ( S )  and 

where u ED(S) such t h a t  un +- 2 as n + 03,  

Therefore,  

H - n __. 
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=2(u $T u ) -a(u19Tul)o-2(u21Tu ) -a(u u 1 l o 2 0  i o  2 $  2 o a  

2 Since T is t h e  smallest c lose  tens ion  of T i n  L (Q), t he re  exists a 

sequence v €D(To) such t h a t  

0 

n 

24 Tu as n + me 1 V 2+ ul, and T v 
L (Q) O L (Q) 

L e t  us def ine  

I assert 

Un + 2 
-H 

as n -t me 

Indeed, i t  s u f f i c e s  t o  show 

m 
n 1 B  From lemma 6.2.1, and t h e  f a c t  t h a t  v - u eH w e  .,ave t h e  following 

inequa l i ty  

Since the  term on t h e  r i g h t  converges t o  0, as n +- m 

which ~ K O V ~ S  t he  a s se r t ion .  
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Since ( *  .) is  equivalent  t o  ( e  *IHs  w e  have e 

Therefore,  from p a r t  (2) 

where f3 = - akl 

a > 0, and is  d i s s i p a t i v e  i f  a = 0. 

This shows -A i s  s t r i c t l y  d i s s i p a t i v e  on D(T)xD(To) i f  2k 
0 

( i i i )  Thirdly,  we show -A is s t r i c t l y  d i s s i p a t i v e  on D(A) i f  

a > 0 and is d i s s i p a t i v e  i f  a = 0. L e t  

Since U ~ E H E ( Q ) ~  the re  e x i s t s  a sequence w €D(T0), such t h a t  n 

a s n + w  2 w 4 u  
H"(S2) 

2 and from the con t inu i ty  of the i n j e c t i o n  mapping from H:(Q) into L (0) 
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If w e  def ine  

w e  see t h a t  

un 'E a s n + m  
H _. 

and 

Since ( * ,  a ) e  is equiva len t  t o  ( e  e w e  have t h a t  )H 

Therefore from p a r t  (ii) 

akl = -81 [uI  I z S  where 13 = - 
2k e - 

0 

Hence, w e  have proved s s t r i c t l y  d i s s i p a t i v e  with respec t  t o  

(.,.), i f  a 0 ,  and i i s s i p a t i v e  i f  a = 0. qed 

W e  are now ready t o  prove ou r  main r e s u l t ,  and so lve  t h e  

s t a b i l i t y  problem f o r  (7-3) 

Theorem 7 , l . l .  L e t  us consider  t he  int t ia l -boundary va lue  problem 

2m (7-3) satisfying t he  condi t  ons (7-4) 

and f o r  any v ( x ) E H ~ ( S ~ )  t he re  e x i s t s  a unique genera l ized  so lu t ion ,  u ( x , t )  

of (7-3) such t h a t  u (x , t )  s a t i s f i e s  t he  boundary condi t ions i n  a general ized 

Then, f o r  any uo (x) d ( T )  = IIB (a )  
m 

0 
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sense (if n = 1, i n  t h e  c l a s s i c a l  sense) ,  and s a t i s f i e s  t he  i n i t i a l  

conditions 

Furthermore, t he  n u l l  so lu t ion  is asymptot ical ly  s t a b l e  with respect t o  

the  L - norm i f  a > 0,  and is  s t a b l e  i f  a = 0. 2 

Proof. We def ine  t h e  a b s t r a c t  opera tor  A as i n  (7-7) on t h e  

2 real  Hi lbe r t  space H~$(O)XL (0 )  obtaining the a b s t r a c t  operator  equation i n  

(7-9). 

and range both contained i n  H, such t h a t  D(A) is  dense i n  11 and R(1-(-A))=H. 

From lemma 7.1.6, -A is  s t r i c t l y  d i s s i p a t i v e  with respec t  t o  

a > 0 and is d i s s i p a t i v e  i f  a = 0. 

From lemma 7,1,3 we  have t h a t  A is a l i n e a r  operator  with domain 

i f  

We can now use the  r e s u l t s  of lemma 

6.1.2, t h a t  is, f o r  any 

2m 
ED(A) = HB (Q)xH:(Q) u = 

-0 

L - I  

there  e x i s t s  a unique so lu t ion  ~ ( t )  of (7-9),  such t h a t  f o r  any t209 

- u(t)cD(A), and ~ ( o )  = I&. Also, s i n c e  @ > ( A )  and A(()) = 0, t h e  n u l l  

s o l u t i o n  is asymptot ical ly  s t a b l e  i f  B > 3 ,  and is  s t a b l e  i f  c3 = 0, Prom 

2m t h i s  r e s u l t ,  w e  have f o r  any uo(x)€HB (Q) and v o ( x ) ~ < ( Q ) ,  t h e r e  e x i s t s  

a unique general ized so lu t ion ,  u ( x , t ) ,  of (7-3), such t h a t  for any t20B 

u(x,t)€HB (0) and u(x,o) = uo(x) and a t  

s a t i s f i e s  t he  boundary condi t ions i n  a gene a l i z e d  sense ( i f  n=X, i n  t h e  

2m u x 0) = v (x). Also, u ( x , t )  
0 

c l a s s i c a l  sense) .  F ina l ly ,  t h e  n u l l  so lu t ion  i s  asymptot ical ly  s t a b l e  i f  
2 

a 0 (and is s ab le  if a = 0) with respect t o  t he  L - norm, qed 

7,2,  S t a b i l i t y  of the  Solu t ion  of a 

I Initial-Boundary Value Problem 
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I n  t h e  previous sec t ion ,  s u f f i c i e n t  condi t ions were given an 

the  system ( A ( x , D )  {B. 1 ,a) t o  guarantee the  exis tence,  uniqueness and 

s t a b i l i t y  of t he  so lu t ion  t o  a l i n e a r  ini t ia l -boundary value problem, 

I n  this sec t ion ,  w e  genera l ize  the  r e s u l t s  of secbion 7 , l  t o  t h e  nonl inear  

case and s u f f i c i e n t  conditions are given t o  ensure the  s t a b i l i t y  of the  

s o l u t i o n  of t h e  nonl inear  problem described below. 

J 

L e t  us consider t h e  following init ial-boundary value problem: 

u x t  au 
2 a t  a t  + a + A(x,D)u(x,t) = f (x,u,-)xEQ,tl() 

a t  

(7- 16) 

where A(x,D) and 13 (x,D) are def ined as follows, 
j 

where the  system(A(x,D) P{B },Sa) s a t i s f i e s  condi t ion (7-4) and is defined 

on the  real base Hilbe t space H E HB(Q)xL (Q) and f ( x , u , z )  s a t i s f i e s  the  

following condition: 

m 2 au 
j 

2 2 f is  def ined on a l l  of $(Q)xL (Sa) i n t o  L ( a ) ,  and the re  e x i s t s  

a constant  k 0 ,  such t h a t  for any u v sHm(Q), and for any 1% 1 B 
2 

U29V2EL (Q) 
(7-17) 

As i n  s e c t i o n  7.1, w e  def ine 
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I- 1 

(7-18) 

and A i s  the  a b s t r a c t  opera tor  defined i n  (7-7) which leads  t o  t h e  

a b s t r a c t  evolu t ion  equat ion 

u(0) = u 0 

-0 - (7-19) 

U t i l i z i n g  the  r e s u l t s  of s e c t i o n  7 .1  we are ready f o r  t h e  main r e s u l t  

of t h i s  sec t ion .  

Theorem 7.2.1. L e t  us consider  t h e  ini t ia l -boundary va lue  

problem (7-16) such that the  system (A(x,D),{B 1,Q) s a t i s f i e s  (7-4) and 

the  nonl inear  func t ion  f s a t i s f i e s  (7-17). 

f o r  any v (x)~fl(Q), t h e r e  exists a unique genera l ized  s o l u t i o n ,  u ( x , t ) $  of 

t he  equat ion (7-16), such t h a t  f o r  any tzO,u(xpt)&H - = vo(x) ,  and u ( x , t )  s a t i s f i e s  t h e  boundary condi t ions  i n  a and 

genera l ized  sense ( i f  n= l ,  i n  the  classical sense).= Furthermore, i f  

j 
2m 
B Then, f o r  any uo(x)&H (0) and 

0 B 
2m 
B (Q) with u(x,o) = uo(x) 

a t  

f (o)  = 0 ,  t he  n u l l  s o l u t i o n ,  is  asymptot ical ly  s t a b l e  i f  
k2 1 /2  2 k <(Z)'I2B9 and i s  s t a b l e  i f  k = (x ) 6, with r e spec t  to t h e  L - norm, 

0 0 

where kopk2 a e def ined i n  (7-14) and 6 is  def ined i n  (7-15) 

Proof, We def ine  t h e  a b s t r a c t  opera tor  A i n  (7-7) and 2 i n  

(7-18) wi th  the  corresponding a b s t r a c t  opera tor  equat ion (7-19) def ined 

2 on the  real Hi lbe r t  space H E I$(B)xL (Q). 

have t h a t  A is  a l i n e a r  opera tor ,  wfeh domain and range conta  ned f n  M such 

From Lemmas 7.1.3 and 7.1.6 w e  

t h a t  D(A) is  dense i n  €I, and R(P-(-A)) H. Also, -A, satisfies the  

fnequalf ty:  t he re  e x i s t s  a constant  8 L 0, such t h a t  f o r  any ~ E D ( A )  
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where (.,.) i s  the  equivalent  i n n e r  product on H ,  defined i n  l e m m a  

7.1.5, and B is  t h e  d i s s i p a t i v i t y  constant defined i n  (7-15). NOW$ l e t  

e 

us consider 

2 f i s  defined on a l l  of H Z Hm(Q)xL (Q) i n t o  H i ( Q )  

-- U,VEII such t h a t  

2(s2) and for any 
B - 

s i n  ce r 0 1 

we have the  following inequa l i ty ,  from (7-17) 

= (2k 0 ) l l 2k [ l  y - v 1  I 

2ko 1 /2  
< (----I kl I F X I  I,. - k2 

Hence, t he  hypothesis of lemma 6 , 4 . 1  is s a t i s f i e d  and applying the 

re t iu l t s ,  i f  we l e t  



l 90 

then, t h e r e  e x i s t s  a unique s o l u t i o n ,  g( t )  of (7-19) wi th  ~ ( o )  = u+ and 

i f  f ( 0 )  = 0 the  n u l l  s o l u t i o n  i s  asymptot ical ly  s t a b l e  i f  k < (j=g-) B ,  

and is s t a b l e  i f  k = 

defined i n  (7-14) and f3 i s  defined i n  (7-15). Prom t h i s  r e s u l t ,  w e  have 

k2 1 1 2  

0 

k2 'I2B, wfth respec t  t o  the E? (Ti? 
0 

t h a t  t he re  exists a unique genera l ized  so lu t ion ,  u ( x , t ) $  of (7-16), such 

t h a t ,  f o r  any t > O ,  u(x,t)cH?(Q), +Hi(S2)9 au  x t with u(x,o) = uo(x) and - 

= v0(x). Also, u ( x , t >  s a t i s f i e s  t h e  boundary condi t ions i n  a a t  
general ized sense ,  i f  n = 1 i n  the  classical sense.  F ina l ly ,  i f  f ( o )  = 0, 

the  n u l l  s o l u t i o n  is asymptot ical ly  s t a b l e  i f  k < (r) B ,  and i s  s t a b l e  

i f  k = (-) 

k2 112 

0 2 
qed k2 112 

2k0 

B ,  with  r e spec t  t o  the  L -norm. 
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theory developed i n  and 7,2, am0 

ec t ion ,  we co i d e r  some appl  

e how t he  theo be a ~ p l i @ d  t o  s o l v i  

I n  s e c ~ i o n  7,3l, w e  co problem and sh  

r e s u l t  ob ta in  o and Vogt i n  E241 is j u s t  a s 

result 7,1 and 7,2, I e consider some 

examples which show how the  the0 can b e  appl ied to sol~ing a l a r g e  

class of i n i t i a l ~ b o ~ ~ d a r y  value problems, 

7,31, Dir i ch le t  Problem 

t h a t  t h e  D i r i c h l e t  problem worked ou 

by Pao and Vogt i n  [ 241 is Ju s p e c i a l  cage of theorems 7 , l , f  and 

7 e 2 e l a  

Pao cons id ere^ the  followf fni ~ i a ~ w b ~ u n d ~  

e 
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0 

e system (A(x,~)~Bo~51) sa 
n 

(i) a s 0, 51 is a bounded domai i n  R n > 1, such tha  - 
is of class c", l o c a l l y  on one s i d e  of 51. 

O D ,  

j(x> aji(x) E ~ ~ ( 3  (1 - < n). C(X) E C (Q) 

such t h a t  rnc c(x) 6 0 ,  and we l e t  cm - miz(-c( )), % rn~(=c(x)). 
XEQ XE51 xEa 

(iii) A(x,D)  is  s t rongly  e l l i p t i c  i n  of order  2m = 2, t h a t  

is, t h e r e  e x i s t s  a constant  a > 0, such t h a t  f o r  any 

E. Rn, and any 

and any u2, v2 

1 ~ u n c ~ ~ ~ n  def ined on all of Ho(Q)x 

~ ~ n s t a n ~  k1 - > 0, such tha  

E L2(Q) 
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w% &h 

n (7-14) 8 and B 
0 

the systgm (~(%$D)*Bo$Q) S a t i s f i e s  (7-4) e I 

l should be noted i n  t h i s  ex p l e  t h a t  HB(R) = Hi(Q) ( see  remark 3,46,1), 

we  have the  smoothness condi t ion  on Q and 

the  strong e l l i p ~ ~ ~ i ~ y  of (x,D), It wa i n  example 5.21,l t ha  

+ t i o n  ( i f  n 3 1, Bo and B- are each l i n e a r l y  independent), 
. . -  . .  0 

n .. 
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It. is clear from the above equafi y B  that for a 

ne to show that there ~ x i s ~ s  a conetant k > 0,  

that for any u E C"(a)  B 
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1 2 de€in@d on a l l  of Ho(Q)XL (Q) in to  L2(Q) and there ex i  

1 2 stant kl 2 0 ,  such hat $or any ulsvl c: H (S2) and any u2@v2 E: L (Q) 
0 

Therefore, we have verif ied the hy~othesis of theorem 7,2, 

e can use theorem 7,1,1) and the re 

us our d e a ~ ~ e d  conclu~~on a d shme that the re 

) : 0 ,  

em 701,l and 7,2,1, 
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where the order of A(D) i 2, and b > 0, 



which w e  have e following r e s u l t :  for any 

ts a unique gene u,(x) E H,(Q) 2 and any vo( 1 E I% 1 (Q), t he re  ex 
0 

) o€ (7-20) such t h a t  fa - > 0, u(x,t) E; Hi(Q) 

,O) = uo(x) a o u(x,t) s a t i s f i ~ s  

dary condi t io  e and i f  f (0)  = 0, 

so lu t ion  is a k2 112 t a b l e  if k < ( - ) fia and 

2 
2kO 

k2 112 
*kO 

k e ( - 1 @ is s t a b l e  wfth respec t  t o  the  L -no where ko, k2  

are constants  i n  (7-14) and fi mfn[l,b]Co, where C, is t h e  co 

The thnesra of an is seen  from the  hypothesis,  The f a c t  

t h a t  A(D) i s  t i c  fn 5 is prev ple 6a52ele 
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G d t  



was proved i n  

eeceion 7*31, and the hypoth@sB 9 , l l  has been verif ied,  

Now,  applying thoae result  w e  obtain the des ired conclusion, The 

same results  can be vesgf i  d r e a ~ ~ l ~  for the case n - 1, 
We w i l l  now solve the problem eon 

idered the $ tab i l i ty  of e l  

y ~ h ~ w  th i s  problem ffts nto our theory, 

d 
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[ O , l ]  with re 

2 and we let  the base ace be H HB[ 

W@ will show (7-22) satiaf ies the h y ~ Q ~ h e s ~  
4 

theorem 7,1el, which gives us the resul that for u,(x) E HBIO 
2 

) E H B I O , l ]  p 

u(x,O) - u,(x) and 

eo 



Il 
0 

0 

0 

a - (A( ;i;; 

4 From the above equality, we have for any u,v E HBIO,l] 

Finally, for any 

W& 
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0 0 

n s  

a + -  
ax 3 Hence, w e  have shown that the aystm (A( -.L 1 ,{B B 1) satisfies 

T e l e l  and w e  obtain the desired resul t ,  
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8 0 e CONCLUSIONS 

8,%, The Objective of t he  Research 

The ob jec t ive  of t h e  d i s s e r t a t i o n  is t o  e s t a b l i s h  some cr i ter ia  

f o r  the  ex is tence  and uniqueness as w e l l  as t he  s t a b i l i t y  of t h e  s o l u t i o n  

t o  l i n e a r  and nonl inear  p a r t i a l  d i f f e r e n t i a l  equat ions with genera l  

boundary condi t ions.  

considered 

The following ini t ia l -boundary value problems are 

(8-1) 
u(x t + A(x,D)u(x,t) = f ( u )  a t  

u (x  t .!!%kd + a + A(x,D)u(x,t) = f ( u )  (8-2) 
a t  2 a t  

(Ogzm-1) 

with genera l  boundary condi t ions 

B (x,D)u(x,t)  = 0 
j 

and i n i t i a l  condi t ion 

U(X,O) = U0(X)" 

With the  co r rec t  d e f i n i t i o n  of t he  base  Hi lbe r t  space,  H, equat ions (8-1) 

and (8-2) with the  boundary condi t ions and i n i t i a l  condi t ion are reduced 

t o  the  a b s t r a c t  opera tor  equat ion 

+ Au(t) = f ( u )  (8-3) d t  

u(0) = u 
0 

re A is the  a b s t r a c t ,  l i n e a r ,  unbounded opera tor  extension of A ( x , D )  

defined on p a r t  of t he  real Hi lbe r t  space H, and f is a nonl inear  func t ion  

on a l l  of H i n t o  i t s e l f .  Pao i n  [23] developed a s t a b i l i t y  theory f o r  the 

a b s t r a c t  equation (8-3) 

the  ex is tence ,  uniqueness and s t a b i l i t y  o r  asymptotic s t a b i l i t y  of the  

so lu t ion  of (8-3), S t a b i l i t y  cri teria is  then e s t ab l i shed  f o r  t he  problems 

i n  which s u f f i c i e n t  cond t i o n s  were given t o  ensure 
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(8-1) and (8-2) from the  r e s u l t s  obtained f o r  t he  a b s t r a c t  equat ion (8-3), 

F i r s t ,  the  ini t ia l -boundary value problem (8-1) i s  considered, 

f o r  the  l i n e a r  case,  f ( u )  Z 0, By defining the  base Hi lber t  space as 

H 5 L (SI), and def in ing  the  appropr ia te  a b s t r a c t  opera tor ,  the  a b s t r a c t  

opera t iona l  equation (8-3) i s  formed and u t i l i z i n g  the  results of Pao [23], 

2 

a s t a b i l i t y  c r i t e r i a  f o r  the  system (A(x,l)),IB ),Q) is es tab l i shed .  

nonl inear  case,  f (u) 0 ,  is considered, and by placing a d d i t i o n a l  restrict- 

The s 

ions on the  func t ion  f ,  cri teria f o r  the  ex i s t ence ,  uniqueness and s t a b i l i t y  

of a s o l u t i o n  are obtained. Since t h e  boundary condi t ions f o r  t he  cases  

n 2 and n = 1 d i f f e r  t hese  cases  are t r e a t e d  sepa ra t e ly ,  

Next, t he  p a r t i a l  d i f f e r e n t i a l  equat ion (8-2) with genera l  boundary 

condi t ions is considered, For the  l i n e a r  case, f ( u )  E 0, by def in ing  

2 t h e  base  Hi lbe r t  space as H f H;(Q)xL (SI) and the  co r rec t  a b s t r a c t  opera tor ,  

A, as a 2 x 2 mat r ix  wi th  opera tor  elements, t he  a b s t r a c t  opera tor  

equation (8-3) is  formed, and by def in ing  an equivalent  i nne r  product on 

H, s t a b i l i t y  c r i t e r i a  is es t ab l i shed  f o r  t h e  a b s t r a c t  equat ion (8-3), and 

f room t hese  results s u f f i c i e n t  condi t ions are placed on t h e  sysfem(A(x,D) 

{Hj ] , S I )  which guarantees  the  ex is tence  and s t a b i l i t y  of t he  s o l u t i o n  t o  (8-2) 

Placing a d d i t  ona l  assumptions on the  nonl inear  funct ion f 0 guarantees 

a s t a b i l i t y  cr i ter ia  f o r  the  nonl inear  problem (8-2). 

Applications are given which show how the  theory can be  appl ied  

t o  many phys ica l  and engineering problems. I n  p a r t i c u l a r ,  i t  is shown t h a t  

t he  U i r i c h l e t  problem is  j u s t  a s p e c i a l  case of t h e  genera l  theory,  and how 

w e  have general ized the  theory t o  inc lude  a much l a r g e r  class of problems. 

In t he  following sec t ion ,  a b i e f  desc r ip t ion  of the  main r e s u l t s  of t h i s  

research are given. 
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8.2, The Main Results 

The ini t ia l -boundary value problem (8-1) with general  boundary 

conditions are inves t iga ted  i n  Chapter 6,O. The l i n e a r  case, f ( u )  I 0, 

is  considered f i rs t ,  By construct ing the  a b s t r a c t  opera t iona l  d i f f e r e n t i a  

equation (8-3), t he  operator  extension,  A ,  of A ( x , D )  i s  shown i n  lemmas 

6.2.3 and 6.2.4 t o  be the  smallest closed l i n e a r  extension of A(x ,D)  

defined on C ; ( Q ) ,  

ensure the  exis tence,  uniqueness, s t a b i l i t y  o r  asymptotic s t a b i l i t y  of the 

so lu t ion  t o  the l i n e a r  problem. The one-dimensiona case, n = 1, is con- 

s idered  sepa ra t e ly  and s t a b i l i t y  cri teria is es t ab l i shed  i n  the0 

With add i t iona l  assumptions on the  nonl inear  func t ion ,  f ( u )  f 0, the  

S u f f i c i e n t  conditions are given i n  theorem 6*2,1s  t o  

nonl inear  s t a b i l i t y  problem i s  then solved f o r  the  case n 1. 2,  i n  theorem 

6.41.2, For the  case n = 1, t h e  r e s u l t s  are found i n  theorem 6.42.1. I n  

theorem 6.51.1, i t  i s  shown t h a t  t he  Dirfchltet problem worked ou t  by 

Buis i n  [7] is  a s p e c i a l  case of theorems 6,2.1 and 6.3.1. Spec i f i c  

appl ica t ions  are worked out i n  examples 6.52.1 and 6.52.2. 

The ini t ia l -boundary value problem (8-2) with genera l  boundary 

conditions are inves t iga t ed  i n  Chapter 7.0. 

s tudied.  

is  proved i n  t h i s  lemma t o  be equivalent  t o  the  o r i g i n a l  i 

defined on H, condi t ions f o r  exis tence,  uniqueness, s t a b i l i t y  and asymptotic 

s t a b i l i t y  are e s t ab l i shed  i n  theorem 7.1,l .  By imposing add i t iona l  restrict- 

ions on t h e  nonl inear  func t ion ,  f (u)  

i n  theorem 7.2.1. I n  example 7.31.1, is shown t h a t  a DirichOet problem 

worked ou t  by Pao and Vogt i n  [24] i s  j u s t  a s p e c i a l  case of theorem 7.2.1- 

Spec i f ic  Applications are worked out  i n  examples 7,32,11 and 7.32,2, 

The l i n e a r  case is f i r s t  

With an inne r  product (.).), on H, defined i n  lemma 7.185, which 

t h e  nonl inear  problem fs solved 
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8-3. Some Suggested Fur ther  Research 

I n  t h i s  work, w e  have s tud ied  the  ini t ia l -boundary value problems 

(8-11) and (8-2) with homogeneous boundary condi t ions.  Lions-Xagenes i n  

El81 solved the  ex i s t ence  and uniqueness problem f o r  t he  nonhomogeneous 

e l l i p t i c  equat ion 

A(x,D)u = f ( u )  on Q. 

The methods used here  and the  work done i n  [18] suggest  an approach t o  

e s t ab l i sh ing  a s t a b i l i t y  criteria f o r  the  nonhomogeneous ini t ia l -boundary 

value problem, which inc lude  the  homogeneous problem as a s p e c i a l  case. 

The s t a b i l i t y  problems (8-1) and (8-2) haxe been solved i n  a 

Hi lber t  space context .  

opera t iona l  d i f f e r e n t i a l  equation (8-3), i n  a Banach space using semi-sc 

Pao i n  [23] e s t ab l i shed  a s t a b i l i t y  c r i t e r i a  f o r  the  

products,  suggesting t h i s  work can be done i n  a Banach space s e t t i n g .  

S t a b i l i t y  is  a norm proper ty ,  and s t a b i l i t y  c r i t e r i a  i3 es t ab l i shed  

2 with respec t  t o  the  L -norm. From t h e  Sobolev Imbedding theorem which 

states t h a t  i f  52 is smooth enough and m is  a l a r g e  enough i n t e g e r ,  

Co(z), and i f  UE (52)cCo(52) then pointwise s t a b i l i t y  can be  considered. 

This suggests  t h a t  p o s s i b i l i t y  of def ining a d i f f e r e n t  base  Hi lbe r t  space,  

say  Hm(52), and e s t a b l i s h i n g  a s t a b i l i t y  criteria with r e spec t  t o  the  

H -norm. m 



Appendix A 

I n  t h i s  Appendix w e . w i 1 1  prove t h a t  the  following two d e f i n i t i o n s  

are equivalent :  
2m m 

HB (52) = completion of CB(52) i n  

HB ( 5 2 )  = completion of CB (Sa) i n  t h e  H -norm, 2m 2m 2m 

The proof uses t h e  following f a c t s  found i n  Schechter [44], and p rope r t i e s  

of {A(x,D) , B .  (x,D) ,521 s a t i s f y i n g  (579) Let t ing  
J 

2 R = {fcL (52) I t h e r e  exists a U E H ~ ~ ( S ~ ) ,  such t h a t  Au=f, and 

B u = 0 on 852 (OLJLm-1)) 
j 

2m N = {UEH ( ~ ) I A U = Q ,  B u = o on an(oLjzm-1)) 1 
2 From t h e  d e f i n i t i o n  of R 

d. 
s i m i l a r l y  N w e  have from Schechter [24] t h e  following f a c t s :  

{gsL (52) I (g,f), 3 0 ,  f o r  a l l  feR),  and 

( i )  NCCm(Z) 

( i i )  R c C  (Q) 

(iii) 

0 1 -  

a 
There ex is t s  a k, > 0, such t h a t  f o r  every UEN 

( iv )  t h e r e  ex is t s  K2 

Aul 1 4- <B u> 3 o j = O  j 2m-m -1 
j T  
6 

2m > 0, such t h a t  f o r  every UEH ( 5 2 )  

2m L e t  u€CB (Q), and E > 0 be given. 

exis ts  a eeCi(52) such t h a t  I Iz-ul I Z m  < E. 

theorem i n  [24], s i n c e  N is a closed subspace we  can l e t  

We w i l l  show by cons t ruc t ion  the re  

From the General P ro jec t ion  

u = u’ + u” where U’EN 

m -  
There e x i s t s  a veC (521, such t h a t  I Iu*-vI I,, < E. Also, from t h e  Gene 
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2 Projec t ion  theorem i n  [ 2 4 ] ,  s i n c e  R is  a closed subspace i n  L ( Q ) ,  w e  have 

d. Av = f + g, where feR and geR 

w -  w -  
can see s ince  v,gcC (Q)$ t h a t  feC (Q). By d e f i n i t i o n  of R,  and from 

w -  
remark 2.1, theorem 2 . 1  i n  [ 2 4 ] ,  w e  can see the re  e x i s t s  a WEC (Q)flN 

such t h a t  

Aw = f ,  B.w = 0 on aQ, 
J 

2m We can now see s i n c e  Au" = 0, and ueCB (a )  

A(w-u') Aw-A(u-u") = f - AU 

B (w-u') = B W-B (u-u") = 0 on an. 
j j j  

I now assert t h a t  

I 1w-u' I /2m L EK1K2 

I To prove t h i s  w e  no te  t h a t  s i n c e  fsR,Au' = AuER, f-Au'cR and gcR 

Yosida [35], (f-Au') + geR + R" imply 

from 

2 2 2 I If-Au'+gl lo I I f -AU ' I  I o  + I lgl Io 
thus from f a c t s  ( i i i )  and (iv) 

C O -  
Now if we def ine  z 

and u"EM, t h a t  zeCB(Q). F ina l ly  

wd-LI", w e  see t h a t  s i n c e  WCC @)nN and B W = O on an, 3 
m -  
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The Research Resul t s  

The present  s t a t u s  of t he  research  is  descr ibed i n  t h e  t echn ica l  

r epor t  " 'S t ab i l i t y  of t h e  Solu t ions  of E l l i p t i c  Par t ia l  D i f f e r e n t i a l  

Equations with General Boundary Conditions" by Eugene Jacob Reiser, 

10 copies  of which are being forwarded t o  NASA Headquarters, 

P o s s i b i l i t i e s  For Future  Research 

Future  research  should concent ra te  on extending the  class of 

n o n l i n e a r i t i e s  which can be handled wi th in  t h i s  framework and t o  

broaden t h e  class of  Lyapunov func t iona l s  considered. Also, s p e c i f i c  

app l i ca t ions  should be  considered, and i n  connection wi th  t h i s ,  c e r t a i n  

computing techniques should be implemented. 


